Mathematical Foundations of Machine Learning Exam of Part I 2023-2024

Massih-Reza Amini Duration: 2 hours 1/2, authorised documents: Slides of the course

Different learning algorithms for binary classification have been proposed for the minimization of the following learning objective over the class of linear functions, $\mathcal{H} = \{h : \mathbf{x} \mapsto \langle \mathbf{w}, \mathbf{x} \rangle\}$:

$$
\hat{\mathcal{L}}_m(S, \mathbf{w}) = \frac{1}{m} \sum_{(\mathbf{x}, y) \in S} \ell(h(\mathbf{x}), y) + \frac{\lambda}{2} ||\mathbf{w}||^2,
$$
\n(1)

where $S = (\mathbf{x}_i, y_i)_{1 \leq i \leq m}$ is a training set of size $m, \mathbf{x} \in \mathcal{X} \subseteq \mathbb{R}^d$ a vector representation of an observation, $y \in \{-1, +1\}$ its associated class label, and ℓ an instantanious loss (called the hing loss) defined as :

$$
\ell(h(\mathbf{x}), y) = \max(0, 1 - yh(\mathbf{x})).
$$
\n(2)

In the following we will analysis the algorithm called PEGASOS (*Primal Estimated sub-Gradient SOlver for SVM*) ¹ which procedure is summarized below.

Algorithm 1 Pegasos

1: **Input:** Training set $S = (\mathbf{x}_i, y_i)_{1 \leq i \leq m}$, constant $\lambda > 0$ and maximum number of iterations *T* 2: **Initialize:** Set $\mathbf{w}^{(1)} \leftarrow 0$ 3: for $t = 1, 2, ..., T$ do 4: Set $S_t^+ = \{ (\mathbf{x}, y) \in S; y \langle \mathbf{w}^{(t)}, \mathbf{x} \rangle < 1 \}$ 5: Set $\eta_t = \frac{1}{\lambda \lambda}$ 6: Update $\mathbf{w}^{(t+1)} \leftarrow (1 - \lambda \eta_t) \mathbf{w}^{(t)} + \frac{\eta_t}{m}$ $\frac{\eta_t}{m} \sum_{(\mathbf{x},y) \in S_t^+} y \mathbf{x}$ 7: end for 8: **Output:** $\mathbf{w}^{(T+1)}$

¹S. Shalev-Shwartz, Y. Singer, N. Srebro and A. Cotter. Primal Estimated sub-Gradient SOlver for SVM (Pegasos) *Mathematical Programming* March 2011, Volume 127, Issue 1, pp 330

Begining from a null weight vector, the algorithm iteratively updates the weights over the subset of misclassified training examples S_t^+ by applying the following rule :

$$
\forall t, \mathbf{w}^{(t+1)} \leftarrow (1 - \lambda \eta_t) \mathbf{w}^{(t)} + \frac{\eta_t}{m} \sum_{(\mathbf{x}, y) \in S_t^+} y \mathbf{x},\tag{3}
$$

where, $\eta_t = \frac{1}{\lambda \lambda}$ $\frac{1}{\lambda \times t}$ is the learning rate. In the following we will analysis the convergence property of the algorithm.

- 1. (1 pt) For an observation (\mathbf{x}, y) and a prediction function $h \in \mathcal{H}$, why the sign of the product $yh(\mathbf{x}) = y(\mathbf{w}, \mathbf{x})$ is an indicator of good/bad classification?
- 2. (1 pt) Which other learning algorithm updates the learning weights over misclassified training examples? In the case where $S_t^+ = (\mathbf{x}_t, y_t)$ is a singleton what is the update rule of this other learning algorithm and what is the difference with the one proposed in PEGASOS (Eq. 3)?
- 3. (1 pt) Draw the binary classification loss $\ell_b : (h(\mathbf{x}), y) \mapsto \mathbb{1}_{y h(\mathbf{x}) < 0}$, and the hing loss (Eq. 2) with respect to the product *yh*(**x**), i.e. the loss on the *y*-axis and $yh(\mathbf{x})$ on the *x*-axis.
- 4. (1 pt) For a given example (\mathbf{x}, y) , what does $\frac{|h(\mathbf{x})|}{\|\mathbf{w}\|}$ represent?
- 5. (1 pt) Why the learning objective (Eq. 1) admits a single minimizer $\mathbf{w}^* \in \mathbb{R}^d$?
- 6. (1 pt) Explain why at the first iteration, S_1^+ is the whole training set; $S_1^+ = S$?
- 7. (1 pt) Show that the update (Eq. 3) follows the gradient descente rule:

$$
\forall t, \mathbf{w}^{(t+1)} \leftarrow \mathbf{w}^{(t)} - \eta_t \nabla_t
$$

where $\nabla_t = \nabla_t \hat{\mathcal{L}}_m(S, \mathbf{w}^{(t)})$ denotes the gradient of the learning objective (Eq. 1) at $w^{(t)}$.

8. (2 pt) For two consecutive weights $w^{(t)}$ and $w^{(t+1)}$, show that

$$
\|\mathbf{w}^{(t)} - \mathbf{w}^{\star}\|^2 - \|\mathbf{w}^{(t+1)} - \mathbf{w}^{\star}\|^2 = 2\eta_t \langle \mathbf{w}^{(t)} - \mathbf{w}^{\star}, \nabla_t \rangle - \eta_t^2 \|\nabla_t\|^2
$$

9. (2 pt) The objective learning function is λ -strongly convex (admitted), that is

$$
\forall u \in \mathbb{R}^d, \langle \mathbf{w}^{(t)} - u, \nabla_t \rangle \geq \hat{\mathcal{L}}(\mathbf{w}^{(t)}) - \hat{\mathcal{L}}(u) + \frac{\lambda}{2} \|\mathbf{w}^{(t)} - u\|^2.
$$

From this property and the previous question, deduce then

$$
\sum_{t=1}^T \left(\hat{\mathcal{L}}(\mathbf{w}^{(t)}) - \hat{\mathcal{L}}(\mathbf{w}^{\star}) \right) \le \sum_{t=1}^T \left(\frac{\|\mathbf{w}^{(t)} - \mathbf{w}^{\star}\|^2 - \|\mathbf{w}^{(t+1)} - \mathbf{w}^{\star}\|^2}{2\eta_t} - \frac{\lambda}{2} \|\mathbf{w}^{(t)} - \mathbf{w}^{\star}\|^2 \right) + \frac{1}{2} \sum_{t=1}^T \eta_t \|\nabla_t\|^2
$$

10. (2 pt) Show that for two consecutive iterations t and $t + 1$, we have

$$
\sum_{j=t}^{t+1} \left(\frac{\|\mathbf{w}^{(j)} - \mathbf{w}^{\star}\|^2 - \|\mathbf{w}^{(j+1)} - \mathbf{w}^{\star}\|^2}{2\eta_j} - \frac{\lambda}{2} \|\mathbf{w}^{(j)} - \mathbf{w}^{\star}\|^2 \right) = \frac{\lambda(t-1)}{2} \|\mathbf{w}^{(t)} - \mathbf{w}^{\star}\|^2 - \frac{\lambda(t+1)}{2} \|\mathbf{w}^{(t+2)} - \mathbf{w}^{\star}\|^2
$$

11. (2 pt) From the two previous questions deduce then

$$
\sum_{t=1}^{T} \left(\hat{\mathcal{L}}(\mathbf{w}^{(t)}) - \hat{\mathcal{L}}(\mathbf{w}^{\star}) \right) \le \frac{-\lambda T}{2} \|\mathbf{w}^{(T+1)} - \mathbf{w}^{\star}\|^{2} + \frac{1}{2} \sum_{t=1}^{T} \eta_{t} \|\nabla_{t}\|^{2}
$$

$$
\le \frac{1}{2} \sum_{t=1}^{T} \eta_{t} \|\nabla_{t}\|^{2}
$$

12. (2 pt) Suppose that the learning rate $\eta_t = \frac{1}{\lambda^2}$ $\frac{1}{\lambda \times t}$, $\forall t$ and that the training data are contained in a ball of radius R ; if at each iteration, we normalize the weights $\mathbf{w}^{(t)}$ such that $\|\mathbf{w}^{(t)}\| \leq \frac{1}{\sqrt{2}}$ $\frac{1}{\lambda}$ show that

$$
\|\nabla_t\| \le \sqrt{\lambda} + R
$$

and deduce that for $T \geq 3$

$$
\frac{1}{T}\sum_{t=1}^T \hat{\mathcal{L}}(\mathbf{w}^{(t)}) \leq \frac{1}{T}\sum_{t=1}^T \hat{\mathcal{L}}(\mathbf{w}^*) + \frac{c(1 + \ln(T))}{2\lambda T},
$$

where, $c = (\sqrt{\lambda} + R)^2$

13. (3 pt) As the learning objective is convex we have from the Jensen inequality that

$$
\mathcal{L}\left(\frac{1}{T}\sum_{t=1}^T \mathbf{w}^{(t)}\right) \leq \frac{1}{T}\sum_{t=1}^T \mathcal{L}(\mathbf{w}^{(t)}).
$$

Using the above inequality and question 12, prove that

$$
\hat{\mathcal{L}}(\mathbf{w}^{\star}) \leq \hat{\mathcal{L}}(\bar{\mathbf{w}}) \leq \hat{\mathcal{L}}(\mathbf{w}^{\star}) + \frac{c(1 + \ln(T))}{2\lambda T},
$$

where $\bar{\mathbf{w}} = \frac{1}{7}$ $\frac{1}{T} \sum_{t=1}^{T} \mathbf{w}^{(t)}$, and finally

$$
\lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} \mathbf{w}^{(t)} = \mathbf{w}^{\star}.
$$