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Different learning algorithms for binary classification have been proposed for the
minimization of the following learning objective over the class of linear functions,
H = {h : x 7→ ⟨w,x⟩} :

L̂m(S,w) =
1

m

∑
(x,y)∈S

ℓ(h(x), y) +
λ

2
∥w∥2, (1)

where S = (xi, yi)1≤i≤m is a training set of size m, x ∈ X ⊆ Rd a vector
representation of an observation, y ∈ {−1,+1} its associated class label, and ℓ an
instantanious loss (called the hing loss) defined as :

ℓ(h(x), y) = max(0, 1− yh(x)). (2)

In the following we will analysis the algorithm called PEGASOS (Primal Esti-
mated sub-Gradient SOlver for SVM)1 which procedure is summarized below.

Algorithm 1 Pegasos
1: Input: Training set S = (xi, yi)1≤i≤m, constant λ > 0 and maximum number

of iterations T
2: Initialize: Set w(1) ← 0
3: for t = 1, 2, ..., T do
4: Set S+

t = {(x, y) ∈ S; y⟨w(t),x⟩ < 1}
5: Set ηt = 1

λ×t

6: Update w(t+1) ← (1− ληt)w
(t) + ηt

m

∑
(x,y)∈S+

t
yx

7: end for
8: Output: w(T+1)

1S. Shalev-Shwartz, Y. Singer, N. Srebro and A. Cotter. Primal Estimated sub-Gradient SOlver
for SVM (Pegasos) Mathematical Programming March 2011, Volume 127, Issue 1, pp 330
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Begining from a null weight vector, the algorithm iteratively updates the weights
over the subset of misclassified training examples S+

t by applying the following
rule :

∀t,w(t+1) ← (1− ληt)w
(t) +

ηt
m

∑
(x,y)∈S+

t

yx, (3)

where, ηt = 1
λ×t

is the learning rate. In the following we will analysis the conver-
gence property of the algorithm.

1. (1 pt) For an observation (x, y) and a prediction function h ∈ H, why the sign of
the product yh(x) = y⟨w,x⟩ is an indicator of good/bad classification?

2. (1 pt) Which other learning algorithm updates the learning weights over misclassi-
fied training examples? In the case where S+

t = (xt, yt) is a singleton what
is the update rule of this other learning algorithm and what is the difference
with the one proposed in PEGASOS (Eq. 3)?

3. (1 pt) Draw the binary classification loss ℓb : (h(x), y) 7→ 1yh(x)<0, and the hing
loss (Eq. 2) with respect to the product yh(x), i.e. the loss on the y-axis and
yh(x) on the x-axis.

4. (1 pt) For a given example (x, y), what does |h(x)|
∥w∥ represent?

5. (1 pt) Why the learning objective (Eq. 1) admits a single minimizer w⋆ ∈ Rd?

6. (1 pt) Explain why at the first iteration, S+
1 is the whole training set; S+

1 = S?

7. (1 pt) Show that the update (Eq. 3) follows the gradient descente rule:

∀t,w(t+1) ← w(t) − ηt∇t

where ∇t = ∇tL̂m(S,w
(t)) denotes the gradient of the learning objective

(Eq. 1) at w(t).

8. (2 pt) For two consecutive weights w(t) and w(t+1), show that

∥w(t) −w⋆∥2 − ∥w(t+1) −w⋆∥2 = 2ηt⟨w(t) −w⋆,∇t⟩ − η2t ∥∇t∥2

9. (2 pt) The objective learning function is λ-strongly convex (admitted), that is

∀u ∈ Rd, ⟨w(t) − u,∇t⟩ ≥ L̂(w(t))− L̂(u) + λ

2
∥w(t) − u∥2.
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From this property and the previous question, deduce then
T∑

t=1

(
L̂(w(t))− L̂(w⋆)

)
≤

T∑
t=1

(
∥w(t) −w⋆∥2 − ∥w(t+1) −w⋆∥2

2ηt
−

λ

2
∥w(t) −w⋆∥2

)
+
1

2

T∑
t=1

ηt∥∇t∥2

10. (2 pt) Show that for two consecutive iterations t and t+ 1, we have
t+1∑
j=t

(
∥w(j) −w⋆∥2 − ∥w(j+1) −w⋆∥2

2ηj
−

λ

2
∥w(j) −w⋆∥2

)
=

λ(t− 1)

2
∥w(t)−w⋆∥2−

λ(t+ 1)

2
∥w(t+2)−w⋆∥2

11. (2 pt) From the two previous questions deduce then
T∑
t=1

(
L̂(w(t))− L̂(w⋆)

)
≤ −λT

2
∥w(T+1) −w⋆∥2 + 1

2

T∑
t=1

ηt∥∇t∥2

≤ 1

2

T∑
t=1

ηt∥∇t∥2

12. (2 pt) Suppose that the learning rate ηt = 1
λ×t

,∀t and that the training data are
contained in a ball of radius R; if at each iteration, we normalize the weights
w(t) such that ∥w(t)∥ ≤ 1√

λ
show that

∥∇t∥ ≤
√
λ+R

and deduce that for T ≥ 3

1

T

T∑
t=1

L̂(w(t)) ≤ 1

T

T∑
t=1

L̂(w⋆) +
c(1 + ln(T ))

2λT
,

where, c = (
√
λ+R)2

13. (3 pt) As the learning objective is convex we have from the Jensen inequality that

L̂

(
1

T

T∑
t=1

w(t)

)
≤ 1

T

T∑
t=1

L̂(w(t)).

Using the above inequality and question 12, prove that

L̂(w⋆) ≤ L̂(w̄) ≤ L̂(w⋆) +
c(1 + ln(T ))

2λT
,

where w̄ = 1
T

∑T
t=1w

(t), and finally

lim
T→∞

1

T

T∑
t=1

w(t) = w⋆.
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