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Clustering

q The aim of clustering is to identify disjoint groups of
observations within a given collection.
⇒ The aim is to find homogenous groups, by assembling

observations that are close one to another, and separating
the best those that are different

q Let G be a partition found over the collection C of N
observations. An element of G is called group (or cluster).
A group, Gk, where 1 ≤ k ≤ |G|, corresponds to a subset of
observations in C.

q A representative of a group Gk, generally its center of
gravity rk, is called prototype.
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Classification vs. Clustering
q In classification: we have pairs of examples constituted

by observations and their associated class labels
(x, y) ∈ Rd × {1, . . . , K}.

q The class information is provided by an expert and the aim
is to find a prediction function f : Rd → Y that makes the
association between the inputs and the outputs following
the ERM or the SRM principle

q In clustering: the class information does not exist and the
aim is to find homogeneous clusters or groups reflecting the
relationship between observations.

q The main hypothesis here is that this relationship can be
found with the disposition of examples in the characteristic
space,

q The exact number of groups for a problem is very difficult
to be found and it is generally fixed before hand to some
arbitrary value,

q The partitioning is usually done iteratively and it mainly
depends on the initialization.
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Different forms of clustering

There are two main forms of clustering:

1. Flat partitioning, where groups are supposed to be
independent one from another. The user then chooses a
number of clusters and a threshold over the similarity
measure.

2. Hierarchical partitioning, where the groups are structured
in the form of a taxonomy, which in general is a binary tree
(each group has two siblings).
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Hierarchical partitioning

q The hierarchical tends to construct a tree and it can be
realized

q in bottom-up manner, by creating a tree from the
observations (agglomerative techniques), or top-down, by
creating a tree from its root (divisives techniques).

q Hierarchical methods are purely determinists and do not
require that a number of groups to be fixed before hand.

q In opposite, their complexity is in general quadratique in
the number of observations (N) !
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Steps of clustering

Clustering is an iterative process including the following steps:

1. Choose a similarity measure and eventually compute a
similarity matrix.

2. Clustering.
a. Choose a family of partitioning methods.
b. Choose an algorithm within that family.

3. Validate the obtained groups.
4. Return to step 2, by modifying the parameters of the

clustering algorithm or the family of the partitioning
family.
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Similarity measures
There exists several similarity measures or distance, the most
common ones are:

q Jaccard measure, which estimates the proportion of common
termes within two documents. In the case where the feature
characteristics are between 0 and 1, this measure takes the form:

simJaccard(x, x′) =

d∑
i=1

xix
′
i

d∑
i=1

xi + x′
i − xix

′
i

q Dice coefficient takes the form:

simDice(x, x′) =

d∑
i=1

xix
′
i

d∑
i=1

x2
i + (x′

i)2
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Similarity measures
q cosine similarity, writes:

simcos(x, x′) =

d∑
i=1

xix
′
i√√√√ d∑

i=1
x2

i

√√√√ d∑
i=1

(x′
i)2

q Euclidean distance is given by:

disteucl(x, x′) = ||x− x′||2 =

√√√√ d∑
i=1

(xi − x′
i)2

This distance is then transformed into a similarity measure,
by using for example its opposite.
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K-means clustering [McQueen, 1967]
q The K-means algorithm tends to find the partition for

which the average distance between different groups is
minimised:

argminG

 K∑
k=1

∑
d∈Gk

||x− rk||22


q From an initial set of centroids (r(1)

k )1⩽k⩽K , the algorithm
iteratively

q Finds new clusters by affecting each observation to the
centroid to which it is the closest;

G
(t)
k = {xi|∥xi − r(t)

k ∥
2 ⩽ ∥xi − r(t)

j ∥
2, ∀j, 1 ⩽ j ⩽ K}

q estimates new centroids for the clusters that have been
found:

r(t+1)
k = 1

|G(t)
k |

∑
xi∈G

(t)
k

xi
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K-means clustering
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K-means clustering
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Mixture models

q With the probabilistic approaches, we suppose that each
group Gk is generated by a probability density of
parameters θk

q Following the formula of total probabilities, an observation
x is then supposed to be generated with a probability

P (x, Θ) =
K∑

k=1
P (y = k)︸ ︷︷ ︸

πk

P (x | y = k, θk)

where Θ = {πk, θk; k ∈ {1, . . . , K}} are the parameters of
the mixture.

q The aim is then to find the parameters Θ with which the
mixture models fits the best the observations
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Mixture models (2)

q If we have a collection of N observations, x1:N , the
log-likelihood writes

LM (Θ) =
N∑

i=1
ln

[
K∑

k=1
πkP (xi | y = k, θk)

]

q The aim is then to find the parameters Θ∗ that maximize
this criterion

Θ∗ = argmax
Θ

LM (Θ)

q The direct maximisation of this criterion is impossible
because it implies a sum of a logarithm of a sum.
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Mixture models (3)

q We use then iterative methods for its maximisation (e.g.
the EM algorithm).

q Once the optimal parameters of the mixture are found,
each document is then assigned to a group following the
Bayesian decision rule:

x ∈ Gk ⇔ P (y = k | x, Θ∗) = argmax
ℓ

P (y = ℓ | x, Θ∗)

where

∀ℓ ∈ {1, . . . , K}, P (y = ℓ | x, Θ∗) = π∗
ℓ P (x | y = ℓ, θ∗

k)
P (x, Θ∗)

∝ π∗
ℓ P (x | y = ℓ, θ∗

k)
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EM algorithm [Dempster et al., 1977]

q The idea behind the algorithm is to introduce hidden
random variables Z such that if Z were known, the value of
parameters maximizing the likelihood would be simple to
be find:

LM (Θ) = ln
∑
Z

P (x1:N | Z, Θ)P (Z | Θ)

q by denoting the current estimates of the parameters at
time t by Θ(t), the next iteration t + 1 consists in finding
the new parameters Θ that maximize LM (Θ)− LM (Θ(t))

LM (Θ)−LM (Θ(t)) = ln
∑

Z

P (Z | x1:N , Θ(t)) P (x1:N | Z, Θ)P (Z | Θ)
P (Z | x1:N , Θ(t))P (x1:N | Θ(t))
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EM algorithm [Dempster et al., 1977]

q From the Jensen inequality and the concavity of the
logarithm it comes:

LM (Θ)−LM (Θ(t)) ≥
∑

Z

P (Z | x1:N , Θ(t)) ln P (x1:N | Z, Θ)P (Z | Θ)
P (x1:N | Θ(t))P (Z | x1:N , Θ(t))

q Let

Q(Θ, Θ(t)) = LM (Θ(t))+
∑

Z

P (Z | x1:N , Θ(t)) ln P (x1:N | Z, Θ)P (Z | Θ)
P (x1:N | Θ(t))P (Z | x1:N , Θ(t))
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EM algorithm [Dempster et al., 1977]

Θ(t+1) Θ(t) Θ

LM (Θ(t+1))

LM (Θ(t))

LM (Θ)

Q(Θ, Θ(t))
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EM algorithm [Dempster et al., 1977]
q At iteration t + 1, we look for parameters Θ that maximise

Q(Θ, Θ(t)):

Θ(t+1) = argmax
Θ

EZ|x1:N

[
ln P (x1:N , Z | Θ) | Θ(t)

]
q The EM algorithm is an iterative

Algorithm 1 The EM algorithm

1: Input: A collection x1:N = {x1, · · · , xN}
2: Initialize randomly the parameters Θ(0)

3: for each t ≥ 0 do
4: E-step: Estimate EZ|x1:N

[
ln P (x1:N , Z | Θ) | Θ(t)

]
5: M-step: Find new parameters Θ(t+1) that maximise

Q(Θ, Θ(t))
6: end for each
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EM algorithm [Dempster et al., 1977]

Figure from
https://en.wikipedia.org/wiki/Expectation%E2%80%93maximization_algorithm
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CEM algorithm [Celeux et al. 91]
We suppose that

q Each group k ∈ {1, ..., K} is generated by a distribution of
probabilities of parameters θk,

q observations are supposed to be identically and
independently distributed according to a probability
distribution,

q each observation xi ∈ C belongs to one and only one group,
we define a indicator cluster vector ti = (ti1, . . . , tiK)

xi ∈ Gℓ ⇔ yi = ℓ⇔ tik =
{

1, if k = ℓ,

0, otherwise.
The aim is to find the parameters Θ = {θk; k ∈ {1, . . . , K}} qui
that maximizes the complete log-likelihood

V(C, π, Θ, G) =
N∏

i=1
P (xi, yi = ℓ, θk) =

N∏
i=1

K∏
k=1

P (xi, yi = k, θk)tik
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Objectif

In general the parameters Θ are those that maximize

L(C, Θ, G) =
N∑

i=1

K∑
k=1

tik log P (xi, yi = k, θk)

=
N∑

i=1

K∑
k=1

tik log P (yi = k)︸ ︷︷ ︸
πk

P (xi | yi = k, θk)

The maximization can be carried out using the classification

EM (CEM) algorithm.
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CEM algorithm [Celeux et al. 91]

Begin with an initial partition G(0).
t← 0
while L(C, Θ(t+1), G(t+1))− L(C, Θ(t), G(t)) > ϵ do

E-step Estimate the posterior probabilities using the current
parameters Θ(t):

∀ℓ = {1, . . . , K}E[tiℓ | xi, G(t), Θ(t)] =
π

(t)
ℓ P (xi | G(t)

ℓ , θ
(t)
ℓ )∑K

k=1 π
(t)
k P (xi | G(t)

k , θ
(t)
k )

C-step Assign to each example xi its partition, the one for which the
posterior probability is maximum. Note G(t+1) this new partition

M-step Estimate the new parameters Θ(t+1) qui maximisent
L(C, Θ(t), G(t+1))

t← t + 1
end while
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Evaluation

q The results of clustering can be evaluated using a labeled
training set.

q The two common measures are purity and Normalised
Mutual Information.

q The purity measure tends to quantify the ability of the
clustering method to regroupe the observations of the same
class into the same partitions. Let G be the partition found
and C the set of classes found over G. The purity measure
is then defined by:

pure(G, C) = 1
N

∑
k

max
l
|Gk ∩ Cl|
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Evaluation
q The Normalised Mutual Information is defined by:

IMN(G, C) = 2× I(G, C)
H(G) + H(C)

where I is the mutual information and H the entropy. These two
quantities can be computed as:

I(G, C) =
∑

k

∑
l

P (Gk ∩ Cl) log P (Gk ∩ Cl)
P (Gk)P (Cl)

=
∑

k

∑
l

|Gk ∩ Cl|
N

log N |Gk ∩ Cl|
|Gk||Cl|

and:
H(G) = −

∑
k

P (Gk) log P (Gk)

= −
∑

k

|Gk|
N

log |Gk|
N

(1)

NMI is equal to 1 if the two sets G and C are identical
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Semi-supervised Learning
q Semi-supervised learning techniques aim at enhancing

supervised models, by respecting the structure of unlabeled
data [Amini, 2015].
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Formally

We consider an input space X ⊆ Rd and an output space Y.

We suppose to have m pairs of examples
S = {(xi, yi), i ∈ {1, . . . , m}} generated i.i.d from a
probability distribution D; along with u observations
U = {xi; i ∈ {m + 1, . . . , m + u}} also generated i.i.d from a
marginal DX , where generally u >> m.

Aim: Construct a prediction function f : X → Y which predicts
an output y for a given new x with a minimum probability of
error.
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Hypothesis

q Cluster assumption: If two observations x1 and x2 in a
high-density region are close, then their corresponding
outputs y1 and y2 should be close as well.
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Generative Approaches
q Under the generative approach, it is assumed that each

observation x is drawn from a mixture of K groups or
classes in proportions π1, ..., πc, respectively, where

c∑
k=1

πk = 1 and ∀k, πk ≥ 0

Further the classes of the labeled examples are known.
q For each labeled example (xi, yi) in S, let ti = {tiℓ}ℓ be the

indicator vector class associated to xi.

∀i ∈ S, ∀k, yi = k ⇔ tik = 1 and ∀ℓ ̸= k, tiℓ = 0

q During training, unlabeled samples will be given tentative
labels. Let ỹ and t̃ denote respectively the class label and
the class indicator vector of an unlabeled observation x
estimated with a learning system.
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Generative Approaches
q Generative models are designed under the smoothness

assumption and there are two main approaches : maximum
likelihood (ML) and classification maximum likelihood
(CML). For both approaches, observations are supposed to
be generated via a mixture density:

P (x, Θ) =
K∑

k=1
πkP (x | y = k, θk)

q [?] has extended CML and CEM for generative algorithms
to the case where both labeled and unlabeled data are used
for learning.

q In this context, the indicator vector class for labeled data
are known whereas they are estimated for unlabeled data,
and the CML writes

Lc(C, Θ, G) =
m∑

i=1

K∑
k=1

tik log P (xi, y = k, Θ)+
m+u∑

i=m+1

K∑
k=1

t̃ik log P (xi, ỹ = k, Θ)
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Semi-supervised CEM
The density probabilities P (x | y = k, θ

(0)
k ) are respectively

estimated on the K classes from the labeled data S, and C(0)

is defined accordingly.
while Lc(C, Θ(t+1), G(t+1))− L(C, Θ(t), G(t)) > ϵ do

E-step: Estimate the posterior class probability that each
unlabeled example xi belongs to C

(j)
k :

∀xi ∈ U , ∀k,E[t̃(j)
ik | xi; C(j), Θ(j)] =

π
(j)
k P (xi | y = k, θ

(j)
k )

P (x, Θ(j))

C-step: Assign each xi ∈ U to the cluster C
(j+1)
k with

maximal posterior probability according to E[t̃ | x]. Let
C(j+1) be the new partition.
M-step: Estimate the new parameters Θ(j+1) which
maximize Lc(C(j+1), Θ(j)) for semi-supervised learning

end while
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Hypothesis

q Low density separation assumption, stipulates that the
decision boundary should lie in a low-density region.
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Discriminant Approaches - Self-Training

q Discriminant models based on the low density separation
assumption, and the most popular one is the self-training
algorithm.
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Discriminant Approaches - Self-Training

q Discriminant models based on the low density separation
assumption, and the most popular one is the self-training
algorithm.

Z̃ℓ ← ∅

S classifier, A

U ← U\{x′}

Z̃ℓ ← Ẑℓ ∪ {(x′, ỹ′)}

x′ ∈ U

-1

+1

Fixed threshold

ỹ′
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Discriminant Approaches - Self-Training

q Discriminant models based on the low density separation
assumption, and the most popular one is the self-training
algorithm.

S classifier, A

U ← U\{x′}

Z̃ℓ ← Ẑℓ ∪ {(x′, ỹ′)}

x′ ∈ U

-1

+1

Fixed threshold

ỹ′
Z̃ℓ
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Discriminant Approaches - Self-Training
q Discriminant models based on the low density separation

assumption, and the most popular one is the self-training
algorithm.

S

Z̃ℓ

U ← U\{x′}

classifier, A

x′ ∈ U

-1

+1

Fixed threshold

ỹ′
U ← U\{x′}

Z̃ℓ ← Z̃ℓ ∪ {(x′, ỹ′)}

q SLA is a discriminant instance of the CEM algorithm.
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Hypothesis
q Manifold assumption: Observations are roughly contained

in a low dimensional manifold.
q The assumption aims to avoid the curse of dimensionality,

as it assumes that learning can be performed in a more
meaningful low-dimensional space.
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Graph-based methods

q Graph-based methods exploit the structure of data by
constructing a graph G = (V, E) over the labeled and the
unlabeled training examples.

q The nodes V = {1, . . . , m + u} of this graph represent the
training examples and the edges E translate the similarities
between the examples.

q These similarities are usually given by a positive symmetric
matrix W = [Wij ]i,j , where ∀(i, j) in{1, . . . , m + u}2 the
weight Wij is non-zero if and only if the examples of indices
i and j are connected, or if (i, j) ∈ E × E is an edge of the
graph G.
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Graph-based methods
Les deux exemples de matrices de similarité communément
utilisées dans la littérature sont :

q The k-nearest neighbours binary matrix,
∀(i, j) ∈ {1, . . . , m + u}2:

Wij = 1 iff xi is among
the kth-nearest neighbours of xj

q The gaussian similarity matrix with hyperparameter
σ,∀(i, j) ∈ {1, . . . , m + u}2 :

Wij = e−
∥xi−xj∥

2

2σ2 (2)

By convention Wii = 0.
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Label propagation

q A simple idea to take advantage of the graph G built is to
propagate the labels of labeled examples across the graph.

q To the nodes 1, . . . , m associated to the labeled examples
are assigned class labels, +1 or −1; and the label 0 is
assigned to the m + 1, . . . , m + u nodes associated to the
unlabeled examples.

q The objective of label propagation algorithms is that
1. Labels found, Ỹ = (Ỹm, Ỹu), are consistent with the class

labels of the labeled examples, Ym = (y1, . . . , ym),
2. Rapid changes in Ỹ between examples that are close, given

the W matrix, are penalized.
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Label propagation (2)
q The consistency between Ym, and the estimated labels Ỹm,

is measured by:
m∑

i=1
(ỹi − yi)2 = ∥Ỹm − Ym∥2 = ∥SỸ − SY ∥2

where, S is a block diagonal matrix.
q The consistency with the geometry of examples, follows the

hypothesis of variety is measured by:

1
2

m+u∑
i=1

m+u∑
j=1

Wij(ỹi − ỹj)2 =

m+u∑
i=1

ỹ2
i

m+u∑
j=1

Wij −
m+u∑
i,j=1

Wij ỹiỹj


= Ỹ ⊤(D ⊖W )Ỹ

where, D = [Dij ] is the diagnoal matrix Dii =
m+u∑
j=1

Wij ,

and ⊖ represents term-by-term matrix subtraction.
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Label propagation (3)
q The objective is hence to minimize the function:

∆(Ỹ ) = 1
2
∥SỸ − SY ∥2 + λỸ (D ⊖W )Ỹ

where λ ∈ (0, 1) is an hyperparameter.
q The derivative of the objective function is hence :

∂∆(Ỹ )
∂Ỹ

= S(Ỹ − Y ) + λ(D ⊖W )Ỹ

= (S ⊕ λ(D ⊖W )) Ỹ − SY

where, ⊕ represents term-by-term matrix addition.
q The minimum of ∆(Ỹ ) is reached for:

Ỹ ∗ = (S ⊕ λ(D ⊖W ))−1SY
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