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Abstract

The enormous wealth of unlabeled data in
many applications of machine learning is be-
ginning to pose challenges to the designers
of semi-supervised learning methods. We
are interested in developing linear classifica-
tion algorithms to efficiently learn from mas-
sive partially labeled datasets. In this paper,
we propose Linear Laplacian Support Vector
Machines and Linear Laplacian Regularized
Least Squares as promising solutions to this
problem.

1. Introduction

A single web-crawl by search engines like Yahoo and
Google indexes billions of webpages. Only a very
small fraction of these web-pages can be hand-labeled
and assembled into topic directories. The remaining
web-pages form a massive collection of unlabeled doc-
uments. Text categorization is among an increasing
range of applications that stand to immensely benefit
from the development of large scale semi-supervised
learning methods.

In this paper, we propose linear semi-supervised clas-
sification algorithms for dealing with large datasets.
Linear methods have traditionally played a pivotal role
in the development of machine learning algorithms.
They have been pervasively deployed in information
retrieval, data analysis and pattern recognition sys-
tems.

Our algorithms are rooted in a general framework for
semi-supervised learning called Manifold Regulariza-
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tion (Belkin, Niyogi & Sindhwani, 2004; Sindhwani,
Niyogi and Belkin, 2005). In this framework, unla-
beled data is incorporated within a geometrically mo-
tivated regularizer. We specialize this framework for
linear classification, and focus on the problem of deal-
ing with large amounts of data.

This paper is organized as follows: In section 2, we
setup the problem of linear semi-supervised learning
and discuss some prior work. The general Manifold
Regularization framework is reviewed in section 3. In
section 4, we discuss our methods. Section 5 outlines
some research in progress.

2. Linear Semi-supervised Learning

The problem of linear semi-supervised clasification is
setup as follows: We are given [ labeled examples
{2;,y;}\_, and u unlabeled examples {z;}/T¥" |, where
the patterns = € X C R are d-dimensional vectors
and the labels y; € {—1,+1} represent two classes.
We are interested in developing tractable algorithms
to learn a linear classifier f(x) = sign(w?z + b)
given by a weight vector w and a threshold b, in the
case where u is very large. We can hope for tractability
when the size of the data matrix is still manageable,
e.g when dealing with low dimensional problems, or
with very sparse high-dimensional problems (e.g text
categorization).

A number of recent efforts have considered semi-
supervised extensions of well-established supervised
methods e.g Support Vector Machines (SVM).

Transductive SVMs (Joachims, 1999) implement the
following philosophy for using unlabeled data to choose
a weight vector: Find a weight vector and a labeling
of the unlabeled examples so that the data (both la-
beled and unlabeled examples) is separated with max-
imum margin. This requires a joint optimization of



the SVM objective function over possible choices of
binary-valued labels on the unlabeled data and the
weight vector.

Transductive SVM:
l

1
(w',b%) = argmin ZuwTw+C Y V(g w'ai+)
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where V(y, f) = (1 —yf)4 is the hinge loss and Cj, C,,
are real-valued parameters that balance the hinge loss
between the labeled and unlabeled examples. Thus,
TSVM minimizes regularized hinge loss over choices
of labels for the unlabeled examples. This optimiza-
tion is implemented in (Joachims, 1999) by first using
an inductive SVM to label the unlabeled data and then
iteratively solving SVM quadratic programs. At each
step labels are switched to improve the objective func-
tion. This procedure is susceptible to local minima
and requires an unknown, possibly large number of
label switches before converging. Thus, this approach
does not seem to be well-suited to large scale problems.

Semi-supervised SVMs (S3VM) (Bennett & Demirez,
1998) use a similar objective function optimized us-
ing mixed integer programming — Assume both posi-
tive and negative labels for each labeled examples and
choose the label that incurs smaller total hinge loss:

Semi-supervised SVM:
l

1
(w*, b*)—argmln2w w—i—C’lZV Yi, W a:l—|—b)

w,b im1
I+
C. Z min [V —1,wlz; + b), V(+1, wlz; + b)}
i=l+1

The 1-norm of the weight vector is preferred in (Ben-
nett & Demirez, 1998); the optimization found to be
intractable even for moderate amounts of unlabeled
data. (Fung & Mangasarian, 2001) reformulate this
approach as a concave minimization problem which is
solved by a successive linear approximation algorithm.
These methods are applied to relatively small sized
problems.

3. Manifold Regularization

Before discussing our algorithms, we briefly discuss
the intuition and algorithmic framework of Manifold
Regularization. The success of semi-supervised learn-
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ing rests on how much information unlabeled exam-
ples carry about the distribution of labels in the pat-
tern space. Frequently, unlabeled examples may help
in identifying clusters or a low-dimensional manifold
structure along which labels can be assumed to vary
smoothly. These are the cluster and manifold assump-
tion respectively.

The Manifold regularization framework extends the
classical framework of regularization in Reproducing
Kernel Hilbert Spaces (RKHS) to exploit the geome-
try of the marginal distribution, as estimated by unla-
beled data, when these assumptions are satisfied. Un-
labeled data is incorporated via a regularization term
(in addition to the RKHS norm) whose role is to pe-
nalize functions for changing rapidly along a manifold
or within a cluster.

The empirical estimate of these underlying structures
can be encoded as a graph whose vertices are the
labeled and unlabeled data points and whose edge
weights {W;; }1 /2, represent appropriate pairwise sim-
ilarity relatlonbhlpb between examples. Given this
graph, one can bias learning in an RKHS towards
functions that vary smoothly along the edges (along
the underlying structure). The following optimization
problem is solved over an RKHS H i with kernel func-
tion K (z,y) and loss function V:

Manifold Regularization'

f* = argmin -~ ZV zi,yi, )+ vall fll%
feEHK i=1

l+u

o Y (Flan) -

ij=1

;) Wi

Here, v4, vr are regularization parameters that control
the RKHS norm and the ntrinsic norm respectively.

Defining, f = [f(21),...,f(#14)]7, and L as the

Laplacian matrix of the graph, given by L = D — W

Where D is the diagnonal degree matrix given by
D;; = Zl ‘| W;j, we re-write the above problem as:

f* = argmin

l
1
fen 72 xlvylv +7AHf||K +71fTLf
€Hk i=1

One can also take powers of the Laplacian LP to de-
fine the graph regularizer. For more on graph regu-
larization, see (Belkin,Matveeva & Niyogi; Kondor &
Lafferty,2002).

A version of the Representer theorem can be easily
proved that shows that the minimizer has the following
form:



I+u

- o

This reduces the optimization problem in manifold
regularization into a finite dimensional problem of es-
timating the (I 4+ u) expansion coefficients «;. The
algorithms that estimate these coeflicients and con-
struct the optimal function are called Laplacian RLS
and Laplacian SVM for the squared loss and hinge
loss respectively. Both algorithms involve inverting
(l+u) x (I4u) dense Gram matrices so that the com-
plexity of a naive implementation is O(l + u)3 which
is prohibitive for large datasets. Experiments showing
state-of-the-art semi-supervised learning performance
with small to moderate number of unlabeled examples
is reported in (Sindhwani, Niyogi and Belkin, 2005).

(1)

(w4,

4. Linear Manifold Regularization

Linear manifold regularization specializes the above al-
gorithms to linear functions resulting in the following
optimization problem:

(w*,b*) = argmin yaw? w + vyw? XTLXw

w,b

N|»—x

!
Z (yi, wla; + b) (2)

where X = [z1...2154]7 is the (I+u) x d data matrix
with rows as training examples. In contrast to TSVM
and S>VM, this is a minimization of a convex problem
whose solution can be readily obtained.

When the data dimensionality d is much larger than
the number of examples (I + u) and there is not much
sparsity, it is advantageous to simply use the general
RKHS algorithms described in Section 3, with the lin-
ear kernel K (z,y) = xTy. However, we are interested
in the case where (I+u) is large but the dimensionality
d or the avergage number of non-zero entries, d, in a
feature vector is relatively small. Also, note that the
graph Laplacian is typically highly sparse with a small
number of entries, k, per column. Instead of looking at
the dual variables «; in the large expansion in ( 1), we
will directly approach the problem in primal variables
w.

4.1. Linear Laplacian RLS

Taking V' to be the squared loss V (y,w”z +b) = (y —
w?z — b)? and setting the gradient of the objective
function to 0, we immediately obtain a linear system
that can be solved to obtain the desired weight vector:

XEX) +yall + I XTLX yw = XY 3
l l
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Here X is the submatrix of X corresponding to la-
beled examples and Y is the vector of labels. This is
a d x d system which can be easily solved when d is
small. When d is large but feature vctors are highly
sparse with d number of non-zero entries, we can em-
ploy Conjugate Gradient (CG) methods to solve this
system. CG techniques are Krylov methods that solve
a system Ax = b by repeatedly multiplying a candi-
date solution z by A. In the case of linear Laplacian
RLS, we can construct the matrix-vector product in
the LHS of (3) in time O(n(d+pk)),where p (typically
very small) is the power of the Laplacian matrix (if
L? is used as the graph regularizer), and k (typically
small) is average number of entries per column in L.
This is done by using an intermediate vector Xw and
appropriately forming sparse matrix-vector products.
Thus, the algorithm can employ very well-developed
methods for efficiently obtaining the solution.

4.2. Linear Laplacian SVM

To solve the optimization problem 4 for the hinge
loss, we adopt a different strategy (which also works
for Linear Laplacian RLS). We can rewrite problem 4
as:

(w*,b*) = argmin y4w”
w,b

Nl}—l

!
Z (yi, wlz; +b)

where T2 —(’yAI—i-fyIX LX)

Changing variables by @ = Tw and & = T~ 'z, we
can convert the above problem into a standard SVM
running only on the labeled examples that are pre-
processed with 7! which is defined using unlabeled
data:

N|,_.

(w*,b*) = argmin @’ @ +
w,b

l
When d is small, the preprocessing matrix is a small
d x d matrix, and the reparameterized SVM runs only

on a small number of labeled examples. After solving
this SVM, we obtain the solution w* = T~ 1w*

w*.
For L2-SVMs defined by the loss function V(y, f) =
(1 — yf)%, there has been recent work on designing
large scale linear SVMs (Keerthi & DeCoste, 2005).
At the core of this algorithm are RLS iterations im-
plemented using conjugate gradient techniques. In co-
junction with efficient CG-based techniques, this algo-
rithm can also be modified to incorporate unlabeled
data via a graph regularizer.



5. Research in Progress

We have discussed some ideas towards linear meth-
ods for utilizing large amounts of unlabeled data. We
are currently interested in efficient implementation of
variations of these ideas, and exploring applications in
real-world classification tasks.

Also of interest is the issue of model selection. The
problem of efficiently probing the space of solutions
for families of shifted Tikhonov regularization prob-
lems generated by the regularization parameter has
received some attention in numerical computing litera-
ture e.g in (Frommer & Maass, 1999). These methods
can possibly be adapted for choosing the parameters

YA, VI-

A class of techniques for data subset selection and low-
rank kernel approximation can also be applied for ef-
ficient non-linear manifold regularization.

Finally, another direction is the development of semi-
supervised feature selection methods building on these
ideas, using the weight vector of the linear semi-
supervised classifier. This has natural applications in
text classification.
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