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IR on the web

The web is not a standard collection!
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Exploitng hyperlinks

Hyperlinks constitute an important source of information that
can be used to improve IR search

1. Enriched indexing of documents/pages through anchors
pointing at them

2. Taking into account the importance of a page in the web
(its PageRank )
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Enriched indexing

Html anchor which points to www.ibm.com and which contains
the text Big Blue

<a href="www.ibm.com">Big Blue</a>

I Enriched indexing by adding to a description of a page all
anchor texts pointing to it

I This enrichment can easily be done at the same time the
collection is indexed
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Importance of a page on the web

Content-wise, the purple and green pages are equivalent.
Which one one should privilege?
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Importance of a page on the web

How to measure the importance of a page?
I Number of outgoing links?
I Number of incoming links?
I ... ?
I Number of incoming links, each link being weighted by the

importance of the page they originate from

A page is all the more important that it is pointed to by many
important pages
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A simple random walk (1)

Imagine a walker that starts on a page and randomly steps to a
page pointed to by the current page, and does so infinitely
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A simple random walk (2)

In an infinite random walk,

1. The number of visits of a page divided by the number of
steps gives an estimation of the probability of visiting a
page in a random walk (the longer the walk, the more
accurate the estimation)

2. The probabilities thus obtained are all the more important
that the page considered is pointed to by important pages
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A simple random walk (3)

There are however a few problems!
1. Dead ends, black holes
2. Cycles
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Solution: teleportation

I At each step, the walker can either randomly choose an
outgoing page, with prob. λ, or teleport to any page of the
graph, with prob. (1− λ)

I It’s as if all web pages were connected (completely
connected graph)

I The random walk thus defines a Markov chain with
probability matrix:

Pij =

{
λ

Aij∑N
j=1 Aij

+ (1− λ) 1
N if

∑N
j=1 Aij 6= 0

1
N otherwise

where Aij = 1 if there is a link from i to j and 0 otherwise

λ is an hyper-parameter, set by user/designer
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Short explanation

λ︸︷︷︸
probability of not teleporting

×︸︷︷︸
and

Aij∑N
j=1 Aij︸ ︷︷ ︸

of selecting j among outgoing links

+︸︷︷︸
OR

(1− λ)︸ ︷︷ ︸
probability of teleporting

×︸︷︷︸
and

1
N︸︷︷︸

of choosing j as destination
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Example (1)

Let us consider the following graph

1 2

34

Its adjacency matrix is defined by

A =


0 1 1 0
1 0 1 1
1 1 0 0
0 0 1 0


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Example (2)

Considering no teleportation (λ = 1)

Pij =
Aij∑N
j=1 Aij

And

P =


0 1

2
1
2 0

1
3 0 1

3
1
3

1
2

1
2 0 0

0 0 1 0


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Definitions and notations

Definition 1 A sequence of random variables X0, ...,Xn is said
to be a (finite state) Markov chain for some state space S if for
any xn+1, xn, ..., x0 ∈ S:

P(Xn+1 = xn+1|X0 = x0, ...,Xn = xn) = P(Xn+1 = xn+1|Xn = xn)

X0 is called the initial state; |S| = N

Definition 2 A Markov chain is called homogeneous or
stationary if P(Xn+1 = y |Xn = x) is independent of n for any
(x , y)

Eric Gaussier PageRank 17



Definitions and notations (cont’d)

Definition 3 Let {Xn} be a stationary Markov chain. The
probabilities Pij = P(Xn+1 = j |Xn = i) are called the one-step
transition probabilities. The associated matrix P is called the
transition probability matrix

Definition 4 Let {Xn} be a stationary Markov chain. The
probabilities Pn

ij = P(Xn+m = j |Xm = i) are called the n-step
transition probabilities. The associated matrix Pn is called the
n-step transition probability matrix

Pn
ij is the term at row i and column j of Pn
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Illustration

Same graph as before

1 2

34

S = {1,2,3,4}
Xn = 1, or 2, or 3, or 4
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Transition probabilities

Remark: P is a stochastic matrix; ∀i ,
∑N

j=1 Pij = 1
Example

P =


0 1

2
1
2 0

1
3 0 1

3
1
3

1
2

1
2 0 0

0 0 1 0


Theorem (Chapman-Kolgomorov equation) Let {Xn} be a
stationary Markov chain and n,m ≥ 1. Then:

Pm+n
ij = P(Xm+n = j |X0 = i) =

∑
k∈S

Pm
ik Pn

kj
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Regularity (ergodicity)

Definition 5 Let {Xn} be a stationary Markov chain with
transition probability matrix P. It is called regular if there exists
n0 > 0 such that pn0

ij > 0 ∀i , j ∈ S

Example

P =


0 1

2
1
2 0

1
3 0 1

3
1
3

1
2

1
2 0 0

0 0 1 0


Is P regular? Is the matrix associated with the random walk
with teleportation regular?
Yes to both questions; n0 = 3 in the first case, 1 in the second!
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Regularity (cont’d)

Theorem (fundamental theorem for finite Markov chains)
Let {Xn} be a regular, stationary Markov chain on a state space
S of N elements. Then, there exists πj , j = 1,2, ...,N such that:

(a) For any initial state i ,
P(Xn = j |X0 = i) −−−−→

n→+∞
πj , j = 1,2, ...,N

(b) The row vector π = (π1, π2, ..., πN) is the unique
solution of the equations πP = π, π1 = 1

(c) Any row of Pn converges towards π when n→∞
π is called the long-run or stationary distribution (PageRank)

Let x(n) denote the probability vector of the walker after n steps
(x (n)

j = P(Xn = j |X0))
⇒ x(n+1) = x(n)P converges to π (due to (a))

Eric Gaussier PageRank 22



Table of content

Introduction

Formalization

Algorithms

Conclusion

Eric Gaussier PageRank 23



Associated algorithms

Three main types
1. Compute x(n+1) = x(n)P (= x(0)Pn+1) till convergence –

power method
2. Compute the left eigenvector of P associated with the

eigenvalue 1 (largest eigenvalue of P)
3. Solve the equations πP = π, π1 = 1 (N equations with N

unknowns) – Gauss-Seidel

Complexity
1. For 1, O(TN2) where T is the number of iterations
2. For 2, O(N3)

3. For 3, O(T ′N2) where T ′ is the number of iterations
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Power method

Input : adj. matrix A, λ, ε (for stopping)
Initialization :
I compute prob. matrix P
I t ← 0, x(t) =

( 1
N , . . . ,

1
N

)
repeat

x(t+1) = x(t)P
δ = ||x(t+1) − x(t)||22
t ← t + 1

until δ ≤ ε
Output : PageRank x(t)

Algorithme 1 : Algorithm "power method"
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Illustration (1)

Let us consider the following graph (with self loops):

1 2

34

Compute the PageRank of each page with λ = 0.8
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Illsutration (2)
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Conclusion (1)

1. Stationary, regular Markov chains admit a stationary
(steady-stable) distribution

2. This distribution can be obtained in different ways:
I Power method: let the chain run for a sufficiently long time
I Linear system: solve the linear system associated with

πP = π, π1 = 1 (e.g. Gauss-Seidel)
I π is the left eigenvector associated with the highest

eigenvalue (1) of P (eigenvector decomposition, e.g.
Cholevsky)

The PageRank can be obtained by any of these methods
(power method, Gauss-Seidel are preferred when the graph is
large)
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Conclusion (2)

Two main innovations at the basis of Web search engines at the
end of the 90’s:

1. Rely on additional index terms contained in anchor texts
2. Integrate the importance of a web page (PageRank) into

the score of a page

The PageRank can be computed to obtain the importance of
any node, in any graph!

References

I C. Manning, P. Raghavan, H. Schütze, ”Introduction to
Information Retrieval”, 2008
(https://nlp.stanford.edu/IR-book/information-retrieval-book.html)

I A. DasGupta, ”Probability for Statistics and Machine Learning”,
Springer, 2011

Eric Gaussier PageRank 30



Conclusion (2)

Two main innovations at the basis of Web search engines at the
end of the 90’s:

1. Rely on additional index terms contained in anchor texts
2. Integrate the importance of a web page (PageRank) into

the score of a page

The PageRank can be computed to obtain the importance of
any node, in any graph!

References

I C. Manning, P. Raghavan, H. Schütze, ”Introduction to
Information Retrieval”, 2008
(https://nlp.stanford.edu/IR-book/information-retrieval-book.html)

I A. DasGupta, ”Probability for Statistics and Machine Learning”,
Springer, 2011

Eric Gaussier PageRank 30



Conclusion (2)

Two main innovations at the basis of Web search engines at the
end of the 90’s:

1. Rely on additional index terms contained in anchor texts
2. Integrate the importance of a web page (PageRank) into

the score of a page

The PageRank can be computed to obtain the importance of
any node, in any graph!

References

I C. Manning, P. Raghavan, H. Schütze, ”Introduction to
Information Retrieval”, 2008
(https://nlp.stanford.edu/IR-book/information-retrieval-book.html)

I A. DasGupta, ”Probability for Statistics and Machine Learning”,
Springer, 2011

Eric Gaussier PageRank 30


	Introduction
	Formalization
	Algorithms
	Conclusion

