
Asynchronous Distributed Matrix Factorization with
Similar User and Item Based Regularization

Bikash Joshi† Franck Iutzeler‡ Massih-Reza Amini†

University of Grenoble Alps - CNRS
† Computer Science Laboratory (LIG)
‡ Applied Mathematics Laboratory (LJK)
{FirstName.LastName}@imag.fr

ABSTRACT
We introduce an asynchronous distributed stochastic gradi-
ent algorithm for matrix factorization based collaborative
filtering. The main idea of this approach is to distribute the
user-rating matrix across different machines, each having ac-
cess only to a part of the information, and to asynchronously
propagate the updates of the stochastic gradient optimiza-
tion across the network. Each time a machine receives a
parameter vector, it averages its current parameter vector
with the received one, and continues its iterations from this
new point. Additionally, we introduce a similarity based reg-
ularization that constrains the user and item factors to be
close to the average factors of their similar users and items
found on subparts of the distributed user-rating matrix. We
analyze the impact of the regularization terms on Movie-
Lens (100K, 1M, 10M) and NetFlix datasets and show that
it leads to a more efficient matrix factorization in terms of
Root Mean Square Error (RMSE) and Mean Absolute Er-
ror (MAE), and that the asynchronous distributed approach
significantly improves in convergence time as compared to
an equivalent synchronous distributed approach.

Keywords
Recommender Systems, Asynchronous Distributed Optimiza-
tion, Similarity-based Regularization

1. INTRODUCTION
The immense growth of e-commerce in the last decade

has resulted in an increasing popularity for Recommender
Systems, helping customers to identify products that best
fit their personal tastes. Many Recommender Systems ap-
proaches were proposed in the recent years among which
collaborative filtering based algorithms have been found to
be very effective [6]. The underlying hypothesis H of these
algorithms is that if two users share the same opinion over
a set of items, they are likely to share the same opinion over
new items. Two popular collaborative filtering techniques

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

RecSys ’16, September 15-19, 2016, Boston , MA, USA
c© 2016 ACM. ISBN 978-1-4503-4035-9/16/09. . . $15.00

DOI: http://dx.doi.org/10.1145/2959100.2959161

that have been developed based on this idea are 1) Neigh-
borhood methods [5], which generate prediction for unseen
items using the past ratings of similar users or items; and 2)
Matrix Factorization techniques [3], that approximate the
matrix of ratings with the product of two matrices corre-
sponding to users and items in some latent space.

In this study, we tackle this problem by splitting the rating
matrix across different machines of a network and propose
a novel distributed asynchronous framework for matrix fac-
torization using the Stochastic Gradient Optimization (SGO)
method for recommender systems. The rational is that ma-
chines connected in a network are generally loaded differ-
ently and synchronous updates may become very slow as
every machine has to wait for the slowest machine to finish
before updating. Moreover, in order to enhance the under-
lying hypothesis H stated above, we add to the classical
RMSE objective two similarity-based regularization terms
that constrain respectively user and item factors to be close
to the factors of their most similar users and items found
in the subpart of the rating matrix stored in the machine.
In our asynchronous framework, each machine performs SGO
in parallel on different parts of the rating matrix and sends
its updated weights to the other machines in the network.
Once a machine receives an updated weight, it averages the
parameter weights with its own updates and continues ap-
plying SGO from the new averaged point. This guarantees
that each machine keeps an overall view over the whole data.

Using Movielens and Netflix datasets, we show that the
addition of the proposed user and item regularization terms
lead to a more effective matrix factorization in terms of
RMSE and MAE. We also demonstrate the attractive con-
vergence properties of our asynchronous distributed update
scheme compared to an equivalent synchronous distributed
approach [8, 4].

In the remainder of the paper, we define in Section 2 the
Matrix Factorization problem with our proposed similarity-
based regularization. Then, in Section 3, we describe the
proposed distributed asynchronous framework. Finally, we
discuss the experimental settings and results in Section 4.

2. MATRIX FACTORIZATION WITH USER
AND ITEM BASED REGULARIZATION

In this section, we introduce basic definitions and the ob-
jectives that we address in our setting of matrix factoriza-
tion. Users and items are respectively represented by the
sets U and I, where ui and ij are respectively the ith user
and the jth item. Furthermore, we denote by rij the rat-

ing of item ij by user ui and we define the ratings matrix
R as the matrix of the rij whenever they exist. The user
|U| ×K factor matrix (resp. item |I| ×K) in a latent space
of dimension K is denoted by P (resp. Q), and pi (resp. qj)
is the size-k vector corresponding to the ith user/line (resp.
jth item/line).

Matrix factorization with Stochastic Gradient Optimiza-
tion (SGO) has been proved to be a successful approach for
recommender systems, notably after winning the Netflix prize
[3]. The premise behind this approach is to approximate
the large rating matrix R with the multiplication of low-
dimensional factor matrices PQT. These factor matrices
try to model user preference for items with small number
K of implicit factors. For a pair of user and item (ui, ij)
for which a rating rij exists, this approach is based on the
minimization of the `2-regularized quadratic error:

`(ui, ij , P,Q) =
(
rij − q>j pi

)2
+ λ(||pi||2 + ||qj ||2) (1)

where λ ≥ 0 is the regularization parameter. The whole
matrix factorization problem thus writes

min
P,Q

∑
i,j:rijexists

`(ui, ij , P,Q) (2)

Note that the error `(ui, ij , P,Q) depends only on P and Q
through pi and qj ; however, item ij may also be rated by user
ui′ so that the optimal factor qj depends on both pi and pi′ .
The Stochastic Gradient Optimization (SGO) method thus
proceeds as follows: at each iteration t, i) select a random
user/item pair (uit , ijt) for which a rating exists; ii) perform
a gradient step on `(uit , ijt , P,Q).

In order to enhance the assumption that similar users have
similar tastes, we impose that the factor vector of each user
(resp. item) should be close to the average factor vector
of its similar users (resp. items). For computing the most
similar users (or items) we considered a modified version of
Pearson correlation coefficient [2] which for two users ui and
uj writes:

sim(ui, uj) =

∑
ik∈Ic

(rik − ri.)(rjk − rj.)√∑
ik∈Ic

(rik − ri.)2
√∑

ik∈Ic
(rjk − rj.)2

Where, Ic is the items co-rated by both users, ri. and rj.
denote the average ratings for ui and uj respectively.

Hence, we are able to find the N most similar users for
ui, denoted by Ni (resp. Nj for items similar to ij). We
now propose a slight modification of the individual ratings
objective function ` of Eq. (1) above by adding another reg-
ularization term. For a pair of user and item (ui, ij) for
which a rating rij exists, the similarity-regularized individ-
ual objective writes:

`1(ui, ij , P,Q) = (rij − q>j pi)2 + λ(||pi||2 + ||qj ||2)

+λu

∥∥∥∥∥∥pi − 1

|Ni|
∑

m∈Ni

pm

∥∥∥∥∥∥
2

+ λi

∥∥∥∥∥∥qj − 1

|Nj |
∑
n∈Nj

qn

∥∥∥∥∥∥
2

(3)

where λu ≥ 0 and λi ≥ 0 are the regularization parameters
linked to the similar-user and similar-item regularizations re-
spectively. Performing the same updates as the conventional
SGO but replacing ` by `1, we get Algorithm 1 for minimizing
the whole matrix factorization problem (Eq. 2) where ` is

Algorithm 1 Similar based regularization

1: procedure Modified SGO

2: Input: R, λ, λu, λi

3: Initialize: P and Q randomly
4: while not converged do
5: Choose randomly (ui, ij) ∈ R
6: Ni = GetSimilarUsers(i,N)
7: Nj = GetSimilarItems(j,N)
8: Update pi and qj by a gradient step on
`1(ui, ij , ·, ·) (Eq. 3)

replaced by `1 i.e. the similarity-regularized problem:

min
P,Q

∑
i,j:rijexists

`1(ui, ij , P,Q). (4)

3. ASYNCHRONOUS DISTRIBUTED SGO
Even though stochastic gradient optimization offers a high

prediction accuracy on recommender system datasets, there
are some computational challenges associated with it. Per-
forming SGO sequentially on a single machine takes unaccept-
ably large amount of time to converge. So, there is a need
to perform SGO in a distributed manner for large datasets.
However, parallelizing SGO is not trivial. A drawback of a
straightforward implementation is that updates on factor
matrices might not be independent. For example, for the
training points that lie on same rows (or columns), they
update the same corresponding row (or column) of P and
Q matrices simultaneously. So, efficient communication be-
tween the computing nodes is necessary to synchronize the
updates on factor matrices.

One common approach is to divide the rating matrix into
several blocks and run SGO on each of the blocks on distinct
machines. Factor matrices are updated on each machine for
the corresponding ratings. Even though the rating matrix
parts on each machine are different, the factor matrix up-
dates are not independent. So, after each epoch the factor
matrices present in each machine are synchronized. We refer
to this method as “Synchronized SGO”, as all machines syn-
chronize their factor matrices after every epoch (in [4] this
method is referred to as Asynchronous SGD because the pa-
rameters are communicated asynchronously, but however,
the epochs are synchronized as aforementioned). But, such
approaches might not be efficient mainly because the compu-
tation time for one epoch of SGO is different depending on the
machine it is performed. So, this approach of synchronous
propagation between machines after each epoch can consid-
erably be slowed down because the faster machines have to
wait for the slower ones in order to synchronize.

We propose here a distributed algorithm for SGO with
asynchronous propagation of parameter matrices after each
epoch. Each of the machines contain a part of the rating
matrix corresponding to clusters of similar users, that could
be found efficiently offline with large-scale graph clustering
techniques [7]. Factor matrices are hence updated on each
machine using only the part of the rating matrix it contains.
As opposed to the synchronous method, we broadcast the
updated factor matrices as soon as the machine finishes one
epoch. So, whenever a new epoch begins, it collects the most
recent factor matrices from other machines and after finish-
ing one epoch it broadcasts its updated factor matrices to

Table 1: MAE and RMSE measures for different methods on MovieLens and NetFlix datasets. Best results are shown in bold.

Dataset
SGO

Modified SGO With Similarity Based Regularization
Similar Users and Items, λu = λi Similar Users Only, λi = 0

MAE RMSE MAE RMSE MAE RMSE

ML-100K
ua 0.7490 0.9478 0.7390 0.9332 0.7404 0.9359
ub 0.7619 0.9660 0.7555 0.9564 0.7540 0.9590

ML-1M
ra 0.7324 0.9706 0.7208 0.9517 0.7188 0.9487
rb 0.6973 0.8861 0.6928 0.8787 0.6946 0.8799

ML-10M rb 0.6523 0.8415 0.6488 0.8384 0.6512 0.8402
NF-Subset NA 0.6498 0.8287 0.6469 0.8256 0.6477 0.8267

all other machines and begins another epoch immediately,
independently of the state of other machines. In this way, all
the machines are running independently of each other. So,
the faster machines will perform their epochs faster, whereas
the slower slower machines will be lagging on time but af-
ter finishing each epoch they will receive the most updated
factor matrices from the faster machines.

In our setting, we cluster the rating matrix R into m
blocks of lines as in [4]. Where m is the number of machines
(or processes) available. The P matrix is also blocked in the
same way. At each node we keep: one block of R, the corre-
sponding block of P , and a local copy of Q. At each epoch,
we update that block of P and local Q matrix based on the
block of R and the individual loss functions (` or `1). The
overall procedure is depicted in Figure 1, showing an exam-
ple distributed network of three machines. R1, R2 and R3

represent the rating blocks on each machine. ep represents
the end of previous epoch and beginning of new epoch on
different machines. As shown, after finishing one epoch each
machine broadcasts its updated Q matrix to all other ma-
chines, whereas at the beginning of new epoch each machine
averages its Q update with the received updated Q matri-
ces from other machines (if any). In this way the updates
from faster machines help the slower machines to converge
faster, thus enhancing the overall convergence time of the
distributed network.

Figure 1: Block Diagram of Asynchronous Distributed SGO

R R2

R1

R3

ep1 ep2

ep1 ep2

ep1 ep2

Q
(0)
1 Q

(1)
1 Q

(1)
1

Q
(0)
2 Q

(1)
2

(Q
(1)
1 +Q

(1)
2)

2

Q
(0)
3 Q

(1)
3

(Q
(1)
1 +Q

(1)
2 +Q

(1)
3)

3

Q
(1)
1

Q
(1)
1

Q
(1)
2

Q
(1)
2

Q
(1)
3

Q
(1)
3

4. EXPERIMENTS
We conducted a number of experiments aimed at evalu-

ating what are the impacts of similar user and item regu-
larization terms on the matrix factorization, and how the
proposed asynchronous framework can help to speed up the
convergence of the SGO algorithm.

Datasets: We performed experiments on MovieLens data-
sets (ML-100K, ML-1M and ML-10M) and a subset of the
NetFlix collection (see Table 2). For ML-100K and ML-1M
we used both sets (ra and rb, or ua and ub), whereas for
ML-10M and Netflix we used a single dataset.

Table 2: Characteristics of Datasets used in our experi-
ments. |U| and |I| denote respectively the number of users
and items.

Dataset |U| |I| K training size test size sparsity
ML-100K 943 1682 20 90570 9430 93.7 %
ML-1M 6040 3952 40 939809 60400 95.8 %
ML-10M 71567 10681 100 9301274 698780 98.7 %

NF-Subset 28978 1821 40 3255352 100478 93.7 %

Implementation: We implemented the distributed frame-
work using PySpark version 1.5.1. To demonstrate the com-
munication between disparate machines, we connected five
servers with different computational loads.

Platform and Parameters: Three of the machines have
Intel Xenon E5-2640 2.60 GHz processors and 256 GB mem-
ory each. The other two machines have Intel Xenon E5-2643
3.40 GHz processors and 128 GB memory each. Even though
some of the machines have identical configuration, they were
running different workloads on them. One of the machines
dispatches the rating matrix across all the others as well as
on itself. We stop the running algorithm on each machine,
when the RMSE difference between two epochs on a valida-
tion set falls below a predefined threshold, ε, fixed as 10−4

in our experiments. The convergence of the proposed asyn-
chronous approach is set when the slowest machine finishes
its job, while for the synchronous SGO all machines finish at
the same time.

Following [1], the number of latent factors for dataset ML-
10M was fixed to 100, and for the other smaller datasets, it
was chosen experimentally for best result/speed compromise
as 40, 40 and 20 respectively. The learning rate and the reg-
ularization parameter λ were fixed to 0.005 and 0.05 as in [1].
For our proposed similarity-based regularization λu, λi, and
the number of similar users/items N were chosen with values
that led to the best RMSE on validation sets for each collec-
tion chosen among {10−1, 5.10−2, 10−2, 5.10−3, 10−3, 5.10−4,
10−4} for λu, λi and {10, 20, 30, 40, 50} for N .

Evaluation Measures: In our experiments, we used the
Mean Absolute Error (MAE) and the Root Mean Square Er-
ror (RMSE) as performance measures. Also, we compared
the convergence time for each of the algorithms in the syn-
chronous and the asynchronous distributed settings.

4.1 The effect of similar based regularization
First, we compare the results between the traditional SGO

method and the proposed Modified SGO with Similarity Based
Regularization. The difference here is solely on the objective
function that is minimized (Pbs. (2) and (4) respectively).

Figure 2: RMSE vs Number of Epochs, until convergence of synchronous and asynchronous distributed SGO approaches with
similar user and item based regularization for matrix factorization.

(a) MovieLens 10M Collection

0 20 40 60 80 100

1

2

∆T ≈ 85 min

Number of Epochs

R
M

S
E

Synchronous distributed SGO

Asynchronous distributed SGO

(b) Netflix(Subset) Collection

0 20 40 60 80

1

2

3

∆T ≈ 24 min

Number of Epochs

R
M

S
E

Synchronous distributed SGO

Asynchronous distributed SGO

We tested two scenarios: i) where only the users are regu-
larized with similarity (λi = 0); and ii) when both users and
items are regularized with the same parameter (λu = λi).
Table 1 shows the complete results of our experiments.

It comes out that forcing the vectors of users and items
to lie within the centroids of their most similar users and
items found by the Pearson similarity measure is effective
as the final RMSE and MAE with Algorithm 1 are always
better than with classical SGO. Thus, there is a significant
benefit to use this regularization in terms of learning. We
also report results by looking at the effect of the similar user
regularization and not items (λu > 0, λi = 0). As shown in
Table 1, this user-only regularization also gives uniformly
better results than traditional SGO, and even better than
the user and item regularization on one dataset.

4.2 Evaluation of Convergence time
Now, we evaluate the proposed asynchronous distributed

method by comparing its convergence time with the syn-
chronous distributed SGO method. We evaluate the conver-
gence speed on the problem with user and item similarity
regularizations in order to show its scalability. The evolu-
tions of RMSE with respect to the number of epochs of our
proposed algorithm and the synchronous SGO on the ML-
10M dataset and the subset of the Netflix collection are
shown in Figure 2. In the case of the asynchronous approach,
we show the convergence time of the slowest machine. As
expected, the proposed approach converges in less epochs
as the slowest machine gets updated values from the faster
machines, which helps it to converge faster, whereas in the
case of the synchronous method, the faster machines have
to wait for the slower ones after every epoch.

5. CONCLUSION
In this work, we presented an asynchronous distributed

framework for SGO. Though generic, the framework was ap-
plied to matrix factorization for recommender systems. Fur-
thermore, we proposed two additional regularization terms
for this task. Experimental results on different MovieLens
and NetFlix collections tend to validate the interest of this
similarity-based regularization as well as the convergence
speedup of the proposed asynchronous approach.

6. ACKNOWLEDGEMENT
This work has been partially supported by the LabEx

PERSYVAL-Lab (ANR-11-LABX-0025-01) funded by the
French program Investissement d’avenir.

7. REFERENCES
[1] W.-S. Chin, Y. Zhuang, Y.-C. Juan, and C.-J. Lin. A

learning-rate schedule for stochastic gradient methods
to matrix factorization. In Advances in Knowledge
Discovery and Data Mining, pages 442–455. Springer,
2015.

[2] J. L. Herlocker, J. A. Konstan, A. Borchers, and
J. Riedl. An algorithmic framework for performing
collaborative filtering. In ACM SIGIR conference on
Research and development in information retrieval,
pages 230–237. ACM, 1999.

[3] Y. Koren, R. Bell, and C. Volinsky. Matrix
factorization techniques for recommender systems.
Computer, (8):30–37, 2009.

[4] F. Makari, C. Teflioudi, R. Gemulla, P. Haas, and
Y. Sismanis. Shared-memory and shared-nothing
stochastic gradient descent algorithms for matrix
completion. Knowledge and Information Systems,
42(3):493–523, 2015.

[5] P. Melville, R. J. Mooney, and R. Nagarajan.
Content-boosted collaborative filtering for improved
recommendations. In National Conference on Artificial
Intelligence, pages 187–192, 2002.

[6] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl.
Item-based collaborative filtering recommendation
algorithms. In International conference on World Wide
Web, pages 285–295. ACM, 2001.

[7] J. J. Whang, X. Sui, and I. S. Dhillon. Scalable and
memory-efficient clustering of large-scale social
networks. In International Conference on Data Mining,
pages 705–714, 2012.

[8] M. Zinkevich, M. Weimer, L. Li, and A. J. Smola.
Parallelized stochastic gradient descent. In Advances in
neural information processing systems, pages
2595–2603, 2010.

