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Abstract. In the context of large-scale problems, traditional multiclass classifi-
cation approaches have to deal with class imbalancement and complexity issues
which make them inoperative in some extreme cases. In this paper we study a
transformation that reduces the initial multiclass classification of examples into a
binary classification of pairs of examples and classes. We present generalization
error bounds that exhibit the interdependency between the pairs of examples and
which recover known results on binary classification with i.i.d. data. We show
the efficiency of the deduced algorithm compared to state-of-the-art multiclass
classification strategies on two large-scale document collections especially in the
interesting case where the number of classes becomes very large.

1 Introduction

The overwhelming growth of textual and visual data contents on the Web raises the is-
sue of automatically structuring these collections into large, open-domain taxonomies.
These taxonomies contain categories organized in a hierarchical structure such as a tree
or a directed acyclic graph. The open directory project, maintained by roughly 90, 000
human editors, is an example of such taxonomies: it lists about 4 million websites dis-
tributed among more than 1 million classes. In that context, large-scale multiclass clas-
sification consists in assigning one class label to each document from the set of leaf
nodes of the hierarchy.

In these Web-scale datasets, the classes exhibit a long-tailed distribution [1] in the
sense that most of them contain very few examples. As most state-of-the-art multiclass
classification approaches learn one scoring function for each class, they do not scale
well to large number of classes in terms of training time, and, more importantly, they
struggle with under-represented classes that tend to be never predicted. Ultimately, the
predictions would be unchanged if most of the least represented classes are ignored.

In this paper, we present a new approach for multiclass classification that can deal
with large number of classes with very few representative examples. The approach
hinges on a theoretical analysis of algorithms that optimize ranking criteria for mul-
ticlass classification, such as those proposed in [22,17]. We provide a generalization
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error bound based on the Rademacher complexity for interdependent data that provides
guarantees for the multiclass classification strategy based on a reduction to binary clas-
sification of pairs of couples (instance, class). The analysis suggests that the guarantees
in terms of generalization performance degrades linearly with the number of classes for
previous approaches that learn one parameter vector per class. To avoid this undesirable
scaling of the sample complexity with respect to the number of classes, we present a
new approach based on learning a combination of similarity features between instances
and classes, where the similarities are computed by identifying a class with the set of
its representative examples. Further, the reduction framework described above allows
us to learn a single parameter vector with a dimension that does not depend on the
number of classes. We empirically demonstrate that our approach is competitive with
state-of-the-art multiclass classification approaches, in particular in terms of the macro
F-measure, which gives higher emphasis to the correct prediction of rare classes than
the classification accuracy. In addition, the number of parameters we learn is of or-
der 107 times less than conventional multiclass classification models, which makes the
approach appealing for large-scale classification.

In Section 2, we position our work with respect to the literature. Section 3 presents
our theoretical analysis and our proposed classification strategy. The design of the fea-
tures and the experimental results are in Section 4.

2 Related work

Several techniques exist to reduce multiclass problems with K classes into binary clas-
sification problems. The most popular approaches include the well-known one-versus-
one (OVO), one-versus-all (OVA) [10], and Error Correcting Output Codes (ECOC) ap-
proaches. In OVO, a binary problem is created for each pair of classes of the initial
problem, leading to K(K − 1)/2 binary problems and, therefore, to as many binary
classifiers. The prediction for a new instance is the class which receives the majority
of the votes. In OVA, K binary problems are created, each one being associated to a
specific class seen as the positive class and the other as forming the negative class.
Given real-valued predictors g1, . . . , gK , the predicted class for an instance x is given
by argmaxy gy(x).

In the ECOC-based approach, a binary code ck of length L is assigned to each class
k, giving rise to L binary classification problems. One binary predictor is learned for
each of the L induced binary problems and, at prediction time, inference is performed
by selecting the class that minimizes the Hamming distance between its code and the
predicted code. Methods to speed up prediction or training with ECOC have recently
been proposed: for example, only a subset of the classifiers may be used at inference
time without loss of accuracy [13]; in another direction, a Naive Bayes approach that
only requires a single pass over the data for training has proved effective [14].

Methods that achieve logarithmic-time prediction or training have been proposed
in [2,3]: they rest on binary tree structures where each leaf corresponds to a class and
inference is performed by traversing the tree from top to bottom, a binary classifier
being used at each node to determine the child node to develop.
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Ranking approaches to multiclass classification [22,17], or the constraint classifica-
tion framework of [6] can be seen as a reduction using binary classifications of pairs
of classes (given an example), similar to ours. The proposed reduction strategy allows
to obtain new generalization error bounds, and lead to a different algorithm. While
state-of-the-art approaches learn one scoring function per class, and thus have similar
computational and sample complexities similar to the OVA approach, we design simi-
larity features between classes and examples allowing to learn a single parameter vector
for the whole problem.

A similar approach for learning representations of classes was also proposed in
[21]. The latter learns a projection of examples and classes into a low dimensional
space, which reduces both training and inference time. In contrast to our approach, the
aforementioned learns one parameter vector per class, while we use joint features of
classes and examples allowing to reduce the number of vector parameters to one.

3 Multiclass to Binary reduction

3.1 Framework
We consider monolabel multiclass classification problems defined on a joint space X ×
Y where X ⊆ Rd is the input space and Y = {1, . . . ,K} the output space, made
of K class labels. Elements of X × Y are denoted as xy = (x, y). Furthermore, we
assume the training set S = (xyii )mi=1 is made of i.i.d pairs distributed according to
a fixed but unknown probability distribution D, and we consider a class of functions
G = {g : X ×Y → R} as our predictors. We define the instantaneous loss of g ∈ G on
an example xy as:

e(g,xy) =
1

K − 1

∑
y′∈Y\{y}

1g(xy)≤g(xy′ ), (1)

where 1π is the indicator function that is equal to 1 if the predicate π is true and 0
otherwise. Compared to the classical multiclass error:

e′(g,xy) = 1y 6=argmaxy′∈Y g(xy′ ),

the loss of (1) estimates the average number of classes, given any input data, that get a
greater scoring by g than the correct class. The loss (1) is hence a ranking criterion, and
the multiclass SVM of [22] and AdaBoost.MR [17] optimize convex surrogate functions
of this loss. This is also used in label ranking [7], where the task is to predict a ranking
of all labels instead of predicting a single label y given an instance x. The multiclass
classification problem we are going to study is that of finding a function g ∈ G using
the labeled training set S with small generalization error L(g):

L(g) = Exy∼D [e(g,xy)] . (2)

Accordingly, the empirical error of g ∈ G over S is

L̂m(g,S) = 1

m

m∑
i=1

(
1

K − 1

∑
y′∈Y\{y}

1
g(xy

i )≤g(x
y′
i )︸ ︷︷ ︸

e(g,x
yi
i )

) (3)
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3.2 Reduction Strategy

We further work out the empirical loss of Equation (3) in order to i) have it ressemble
a more usual binary classification loss with, in particular, a single sum running over
only one index, ii) make apparent the need of dealing with non-i.i.d. random variables
and iii) after a theoretical introduction, set the stage for our practical binary reduction
approach.

A first step to reshape the empirical loss is to see that the instantaneous loss (1) can
be rewritten as

e(g,xy) =
1

K − 1

∑
y′∈Y\{y}

1ỹh(xy,xy′ )≤0,

where h is defined as h(xy,xy
′
) = g(xy) − g(xy

′
). This bears strong resemblance

with a binary-classification-loss-based risk, a resemblance that can be strengthened by
introducing the transformed set T (S) of size n = m(K − 1) defined as

T (S) = {(Zj , ỹj) : j = 1, . . . , n} , (4)

where each Zj is one of the pairs (xyi ,x
y′

i ), and ỹj = 1 if the first observation in Zj

is constituted by an example xi and its true class in S (i.e. y = yi) and the second
observation is constituted by the same example and any other of the K − 1 classes; and
ỹj = −1 otherwise (i.e. if the order is reverse). This allows us to rewrite the empirical
loss of (3) as

LTn (h, T (S)) =
1

n

n∑
j=1

1ỹjh(Zj)≤0. (5)

With these definitions at hand, it is clear that the selection of a hypothesis in G
minimizing the empirical risk of (3) over the training set S, is equivalent to the search
of a hypothesis in H = {h : h(xy,xy

′
) = g(xy) − g(xy′), g ∈ G} minimizing the

empirical risk of (5) over T (S). However, even if the examples in S are i.i.d., the ex-
amples in T (S) are no longer independent since the same observations xy ∈ S are
involved in different pairs of T (S). Thus, in order to obtain generalization error bounds
LTn (h, T (S)) we need to address the issue of learning with interdependent data.

There exist several ways to tackle this problem among which two settings received
particular attention in the literature. The first one deals with learning from mixing pro-
cesses, where the dependency between random variables decreases over time [12,18].
The second direction, on which the present work is based on, is developed around the
idea of graph coloring that divides a graph, representing the relations between random
variables, into sets of independent random variables called proper cover of the graph
[8].

A proper cover of T (S) is constituted of K−1 disjoint sets (Ck)K−1k=1 each contain-
ing m independent examples. For all k ∈ {1, . . . ,K − 1} it is defined as

Ck = {(Zk+j(K−1), ỹk+j(K−1)); j ∈ {0, . . . ,m− 1}}
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Fig. 1. The proper exact fractional cover of the set T (S) obtained after transformation of the
training set S = {x1

1,x
2
2,x

3
3}. For the sake of clarity, the class labels of pairs of examples are

omitted. The fractional chromatic number of T is in this case χ∗T = 2.

Moreover, (Ck, αk)K−1k=1 is said to be a proper exact fractional cover of T (S), if
(Ck)

K−1
k=1 is a proper cover of T (S) and if ∀k, αk > 0 and

∀i ∈ {1, . . . , n},
∑
k=1

αk1(Zi,ỹi)∈Ck
= 1.

The fractional chromatic number of T , denoted as χ∗T is then the minimum sum
of weights, or the minimum number of sets containing each independent random vari-
ables, which for the proposed transformation is equal to K − 1. Figure 1 depicts the
transformation and its associated proper exact fractional on a toy problem.

Using graph coloring arguments, [8] extended Hoeffding’s inequality to sums of
interdependent random variables and based on that result, different studies proposed
new generalization error bounds for learning with interdependent data, thus proving
the consistency of the ERM principle for this case [20,16]. Here we build on [20] who
proposed a generalization of [11] concentration inequality to the case of interdependent
random variables.

Our theoretical result is the following theorem which provides data-dependent bound
on the generalization error of the multiclass classifier (Eq. 2). This result is at the basis
of the algorithm for the binary classification of pairs of examples that we expose in the
next section. We consider here kernel-based hypotheses with κ : Z → R a positive
semidefinite (PSD) kernel and Φ : X ×Y → H its associated feature mapping function,
defined as:

GB = {xy ∈ X × Y 7→ 〈w, Φ(xy)〉 | ||w|| ≤ B} (6)
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where w is the weight vector defining the kernel-based hypotheses and 〈·, ·〉 denotes
the dot product. We further define the following associated function class:

HB = {(xy,x′y′) ∈ Z 7→ gw(x
y)− gw(x′y

′
) | gw ∈ GB}.

Theorem 1 Let S = (xyii )mi=1 ∈ (X × Y)m be a dataset of m examples drawn i.i.d.
according to a probability distribution D over X × Y and T (S) = ((Zi, ỹi))

n
i=1 ∈

(Z×{−1, 1})n the transformed set obtained with the transformation function T defined
above. Further let κ : Z → R be a PDS kernel, and let Φ : X × Y → H be the
associated feature mapping function. Then for all 1 > δ > 0 with probability at least
(1− δ) over T (S) the following generalization bound holds for all hw ∈ HB:

LT (hw) ≤ εTn (hw, T (S)) +
2BG(T (S))
m
√
K − 1

+ 3

√
ln( 2δ )

2m
(7)

where εTn (h, T (S)) = 1
n

n∑
i=1

L(ỹihw(Zi)) with the surrogate Hinge loss L : t 7→

min(1,max(1−t, 0)),LT (hw) = ET (S)[L
T
n (hw, T (S))] and G(T (S)) =

√∑n
i=1 dκ(Zi)

with
dκ(x

y,xy
′
) = κ(xy,xy) + κ(xy

′
,xy

′
)− 2κ(xy,xy

′
)

Proof. Exploiting the fact thatL dominates the 0/1 loss and using the fractional Rademacher
data-dependent generalization bound proposed for interdependent data in Theorem 4 of
[20] one has

LT(hw)≤εT (hw) ≤ ε̂Tn (hw, T (S))+R̂Tn(L◦HB ,S)+3

√
χ∗T ln( 2δ )

2n

Where εT (hw) = ET (S)[ε̂
T
n (hw, T (S))] and R̂Tn (L◦HB ,S) is the empirical fractional

Rademacher complexity of L ◦ HB on T (S). Further, as L is 1-Lipschitz, so

R̂Tn (L ◦ HB ,S) ≤ R̂Tn (HB ,S)

where

R̂Tn (HB ,S)=
K−1∑
k=1

2αk
M

Eσ sup
h∈HB

m−1∑
j=0

σjhw(Zk+j(K−1))

Now, for all k ∈ {1, ..,K−1} and j ∈ {0, ..,m−1}, let zkj and z′kj be the first and
the second pair of Zk+j(K−1), then from the bilinearity of dot product and the Cauchy-
Schwartz inequality, R̂Tn (HB ,S) is upper-bounded by

K−1∑
k=1

2αk
n

Eσ sup
hw∈HB

〈
w,

m−1∑
j=0

σj(Φ(zkj)− Φ(z′kj))
〉

≤
K−1∑
k=1

2Bαk
n

Eσ

∥∥∥∥∥∥
m−1∑
j=0

σj(Φ(zkj)− Φ(z′kj))

∥∥∥∥∥∥
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Further, for all i, j ∈ {0, . . . ,m− 1}2, i 6= j, we have Eσ[σiσj ] = 0 so

R̂Tn (HB ,S) ≤
K−1∑
k=1

2Bαk
n

√√√√m−1∑
j=0

dκ(zkj , z′kj)

=
2Bχ∗T
n

K−1∑
k=1

αk
χ∗T

√√√√m−1∑
j=0

dκ(zkj , z′kj)

Now as
∑K−1
k=1

αk

χ∗T
= 1 and that t 7→

√
t is concave, from Jensen inequality we have

R̂Tm(HB ,S) ≤
2Bχ∗T
n

√√√√K−1∑
k=1

αk
χ∗T

m−1∑
j=0

dκ(zkj , z′kj)

The result follows from rearranging the examples and the equalities χ∗T = K − 1, and
n = (K − 1)m.

3.3 Favoring Low-Dimensional Feature Maps

Our reduction relies on the joint representation Φ(xy) of features and classes. Such
feature maps are at the basis of algorithms such as structured SVM (see e.g. [19]), to
account for features encoding properties of structures such as sequences or trees. How-
ever, in multiclass classification, the output space is unstructured and these algorithms
are then applied by taking a ”‘trivial”’ feature map such that even if a single parameter
vector is used, it is in fact the concatenation of one parameter vector per class. In that
case, Φ(xk) ∈ RdK (with x ∈ Rd) is a vector where all entries are zero except those
with indices in the range [1+(k−1)d; kd], which are equal to x. The reduction of mul-
ticlass classification to constraint classification of [6] follows the same idea. With this
kind of joint (instance, class) representation, the natural regularization is to constrain
each parameter vector to have a norm smaller than some B. The whole vector w would
then have a norm aboutKB, leading the capacity term of Theorem 1, G(T (S)), to grow
linearly with K. To avoid this linear detorioration of the generalization performance
guarantees, we might choose to put a stronger regularization on some classes, e.g. the
rare classes. But then these heavily regularized classes would be penalized because the
magnitude of their predicted scores would be smaller: they would rarely or never be
predicted. We propose to give an alternative answer to avoid the dependence of the
penalty term on K. We advocate the design of a non-trival joint feature representation
Φ(xy) by using a small number of adequatley chosen similarity features between exam-
ples and classes, so that this joint feature space is the same for any number of classes.
The goal of learning is then to combine these features, using the same parameter vec-
tor for all classes. Then, the natural scaling of the penalty term of Theorem 1 should
remain constant, and the detrimental effect of having stronger regularization on certain
classes disappears. The proposed approach denoted by mRb, for multiclass reduced to
binary classification, is hence depicted in Algorithm 1. As the learned classifier from
the function class GB is linear in the feature space, the output of a function h ∈ HB over
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Algorithm 1: Multiclass reduced to binary classification (mRb)
Input: Labeled training set S = (xyi

i )mi=1 ;
A binary classifier A ;
Initialize
T (S)← ∅ ;
for i = 1..m do

for k = 1..K do
if yi > k then

T (S)← {(Φ(xyi
i )− Φ(xk

i ),+1)};
end
if yi < k then

T (S)← {(Φ(xk
i )− Φ(xyi

i ),−1)};
end

end
end
Learn A on T (S);

an example (xy,xy
′
) can be computed as the dot product between the learned weight

vector, w, and the difference between the vector representations Φ(xy) − Φ(xy′). For
testing a new example x′, we estimate Φ(x′y) for all x′y pairs. Given the learned weight
vector w, the predicted class is the one which maximizes the dot product

〈
w, Φ(x′

y
)
〉
.

4 Experiments

We use non-trivial joint feature representation, which is popularly used in text clas-
sification domain. So, we evaluate the proposed method for multi-class classification
in a large-scale scenario using DMOZ and Wikipedia datasets of the Large Scale
Hierarchical Text Classification challenge (LSHTC 2011) [15]. These datasets con-
tain 27875 and 36504 categories respectively for DMOZ and Wikipedia and they are
provided in a pre-processed format using stop-word removal and stemming. The di-
mension of the vectorial space (d), the size of the training set (m) and the test set are
respectively 594158, 394756 and 104263 for DMOZ and 346299, 456886 and 81262
for Wikipedia. For each of these datasets we randomly draw several samples with
increasing number of classes: 100, 500, 1000, 3000, 5000 and 7500 and by keeping
the same proportion of examples in the training and the test sets than in the initial
collections. For the feature mapping, we used the following features in the vector rep-
resentation of Φ(xy) (table 1) by considering a class y as a mega-document, constituted
by the concatenation of all of the documents in the training set belonging to it. Almost
all the features, except 9 and 10, are classical features employed in learning to rank by
assimilating a class and a document to respectively a document and a query. The former
two are the distance of the example x to its two nearest neighbours in class y. Since the
absolute values of each feature for the documents are different and not comparable, we
normalize them such that the feature values are confined within the range of 0 to 1. Fol-
lowing our theoretical result, we used SVMwith linear kernel as our binary classification
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Table 1. Let xt represent the term frequency of term t in document x, and V the set of distinct
terms within S, then yt =

∑
x∈y xt, |y| =

∑
t∈V yt, St =

∑
x∈S xt, lS =

∑
t∈V St. It is the

inverse document frequency of term t, and d1(xy) and d2(xy) are the distances of x to its two
nearest neighbours in class y.

Features in the vector representation of Φ(xy).

1.
∑

t∈y∩x

ln(1 + yt) 2.
∑

t∈y∩x

ln(1 +
lS
St

) 3.
∑

t∈y∩x

It 4.
∑

t∈y∩x

yt
|y| .It

5.
∑

t∈y∩x

ln(1 +
yt
|y| ) 6.

∑
t∈y∩x

ln(1 +
yt
|y| .It) 7.

∑
t∈y∩x

ln(1 +
yt
|y| .

lS
St

) 8.
∑

t∈y∩x

1

9. d1(xy) 10. d2(xy)

algorithm. The value of the hyperparameter C is chosen from a range of values from
10−3 to 103 by cross-validation. We compared the proposed approach, mRb (Figure
1), with the hierarchical reduction approach (LogT) proposed by [3] and the following
multiclass classification techniques using the LibLinear package [5] that implements
them all: One Vs. All (OVA), One Vs. One (OVO) and Multiclass SVM (M-SVM) pro-
posed by [4]. For all of these methods we adopted the tfidf encoding of features as it
provided the best performance. Results are evaluated over the test set using the accuracy
and the macro F1 measure (MaF1), which is the harmonic average of macro precision
and macro recall. The reported performance is averaged over 50 random (train/test) sets
of the initial collection for every fixed number of classes we considered. In all of our ex-
periments, we used a server with an intel Xenon 1.8HGz processor and 16GB of RAM.

Table 2. Accuracy, MaF1 of methods that could be trained with 7500 classes of DMOZ and
Wikipedia collections. Nc is the proportion of classes that are covered. Statistics are given
over 50 random samples of training/test sets.

DMOZ-7500 Wikipedia-7500
Accuracy MaF1 Nc Accuracy MaF1 Nc

mRb 0.499↓±.011 0.352 ± .009 0.495 0.467↓±.023 0.378 ± .012 0.551
OVA 0.549±.036 0.282↓±.018 0.379 0.484±.029 0.348↓±.017 0.489
LogT 0.311↓±.034 0.096↓±.029 0.194 0.231↓±.035 0.151↓±.021 0.287

We start our evaluation by analyzing the performance measures of different approaches
on the setting with the largest number of classes we considered in our experiments
(K = 7500). Table 2 summarizes results obtained by mRb, OVA and LogT, as the cor-
responding training processes of M-SVM and OVO were killed by the system and did not
pass the scale. Results are averaged over 50 random splits of tests sets. We use bold face
to indicate the highest performance rates, and the symbol ↓ indicates that performance
is significantly worse than the best result, according to a Wilcoxon rank sum test used
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Fig. 2. MaF1 of all methods with respect to the number of classes for DMOZ (top left) and
Wikipedia (top right). Training time in seconds of all methods with respect to the number
of classes for Wikipedia (bottom).

at a p-value threshold of 0.01 [9]. The competitive methods are OVA and mRb with a
discrepancy over their accuracy and MaF1 measures on both collections. To analyze this
divergence we estimated the proportion of classes that have been covered, or for which
at least one true positive document was found. It comes out that mRb covers 6% to 12%
more classes than OVA (that is 465 to 900 more classes on both datasets). The reason
here is that OVA is affected by the class imbalance problem especially in the extreme
case where classes contain very few documents. For the large scale scenario this prob-
lem is accentuated as the class distribution is long-tailed, as for example in DMOZ-7500,
more than half of the classes contain less than 5 documents (Figure 3). We also analyze
the behavior of the various algorithms for increasing number of classes. Figure 2 (top)
illustrates this by showing the MaF1 measures on DMOZ and Wikipedia with respect
to the number of classes. As expected all performance curves decrease monotonically
with respect to an increasing number of classes. The breaking points beyond which
OVO and M-SVM cannot be trained, happen at the same time on both collections for re-
spectively K = 500 and K = 3000 classes. The performance of mRb are in between of
those of OVA and M-SVM before the breaking point, with a slight advantage for M-SVM,
while mRb uniformly outperforms OVA with a larger gap on Wikipedia. We notice
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Fig. 3. Distribution of classes with respect to the number of documents they contain for DMOZ-
7500.

that on this collection, mRb achieves for 7500 classes MaF1 score comparable to the
OVA’s one for 5000 classes. Comparatively, for K = 3000, the numbers of parameters
of these two models are roughly 5.4 × 108 to 6.5 × 108 on respectively Wikipedia
and DMOZ collections which are O(107) with respect to the fixed number of parameters
of mRb we have. Figure 2 (bottom) summarizes the training time of all methods for an
increasing number of classes on Wikipedia. mRb has the second fastest running time
after LogT which together with its small number of parameters and its performance
makes it appealing for classification in large-scale taxonomies.

5 Conclusion

We presented a new method for large-scale multiclass classification based on a reduc-
tion of multiclass classification to binary classification. The theoretical analysis based
on the fractional Rademacher complexity shows that learning a single scoring function
for all classes, instead of one scoring function per class, avoids the capacity term to
grow linearly with the number of classes, contrarily to existing methods. In addition,
to have better scalability than existing methods, the features that we designed to jointly
represent classes and documents improved the covering of rare classes compared to its
counterparts, which is also depicted on MaF1 score.
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