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ABSTRACT
We investigate the integration of word embeddings as clas-
sification features in the setting of large scale text classifi-
cation. Such representations have been used in a plethora
of tasks, however their application in classification scenar-
ios with thousands of classes has not been extensively re-
searched, partially due to hardware limitations. In this
work, we examine efficient composition functions to obtain
document-level from word-level embeddings and we subse-
quently investigate their combination with the traditional
one-hot-encoding representations. By presenting empirical
evidence on large, multi-class, multi-label classification prob-
lems, we demonstrate the efficiency and the performance
benefits of this combination.
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1. INTRODUCTION AND PRELIMINARIES
With the proliferation of text data available online, text

classification has attracted a lot of interest. Traditionally,
N -grams are considered as document features and are sub-
sequently fed to a classifier such as Support Vector Machines
(SVMs) [4, 7]. One-hot-encoding representations, although
prominent in the literature, have two significant drawbacks:
(i) they result in a very high dimensional and sparse feature
space, and (ii) they do not encode similarity between words.
Lately, a lot of research has been devoted to the direction
of distributed representations [6]. Distributed representa-
tions of words, are continuous, low dimensional, dense vec-
tors that characterize the meaning and the semantic content
of words. Each dimension of the embedding represents a la-
tent feature of the word, hopefully capturing useful syntactic
and semantic properties. As a result, semantically similar
words, such as “strong” and “powerful”, will be close in the
output vectorial space.
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In this work, we present a focused contribution as part
of an interesting classification application. We investigate
the performance of word embeddings learned using the skip-
gram model [17] in the context of large scale, multi-label doc-
ument classification. We report results on real-world classi-
fication problems with up to 10,000 classes and we demon-
strate a straightforward way to combine document-level em-
beddings with one-hot-encoding representations. The con-
tributions of our work are twofold: we, first, propose an effi-
cient way to achieve satisfactory classification performance
using only embedding representations and, we further im-
prove it by applying a naturally parallelizable fusion mech-
anism between the distributed representations and one-hot-
encoding representations.

Several methods have been proposed for obtaining dis-
tributed word-level representations. We cite for instance:
[18, 17, 3, 15, 24]. Extensions of those methods have been
proposed to cope with larger portions of text such as sen-
tences or paragraphs: [30, 14, 25]. However, generalizing
from words to larger text spans can be inefficient, since for
every unseen span new passes over a neural network are re-
quired. Hence, we focus on methods that given a dictionary
of word representations apply composition functions [19, 2]
to produce document representations.

Although distributed embeddings have been applied in a
plethora of tasks from analogies evaluation [16] to extractive
summarization [9], their application on large scale text clas-
sification has not been investigated. What is more, most of
the work in this direction deals with short text spans, such
as sentences or tweets, and the size of the investigated prob-
lems with regard to the number of classes is small. Recently,
for instance, [11, 12, 26] investigated the problem of short
text similarity with applications to classification with a lim-
ited number of classes, like binary sentiment analysis [20]
and ternary sentiment analysis [21]. More frequently, word
embeddings for text classification are used for initializing
architectures such as convolutional and recurrent networks.
The works of [10] and [13] for instance, are in this line but,
again, they limit their study at sentence-length spans. The
latter is, also, due to hardware limitations of the GPUs used:
their limited memory capacity in conjunction with the vo-
cabulary size of large scale classification problems require
many data transfer operations which results in significant
overhead. In this work we place ourselves at the large scale
setting (number of classes in the order of 104) where com-
positional methods based on neural networks are difficult to
be applied.

The remainder of this paper is organised as follows: in
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Instances Vocabulary
Avg. labels per

instance
Avg. Doc.
Size (words)

Train Data 12.5M 868,219 - 215
PubMed1000 225,000 289,789 1.42 239
PubMed5000 225,000 302,802 3.23 233
PubMed10000 225,000 303,637 6.64 230

Table 1: Description of the data used to obtain
the distributed representations (Train Data) and for
classification purposes.

Section 2 we propose and evaluate composition functions
for obtaining document from word representations, and in
Section 3 we discuss their integration with one-hot-encoding
schemes. Finally, Section 4 concludes with remarks to our
future work.

2. DISTRIBUTED REPRESENTATIONS AS
CLASSIFICATION REPRESENTATIONS

We explore three functions to compose document repre-
sentations: min, average and max [3, 25] which have been
used as simple yet effective methods for compositionality
learning in vector-based semantics [19], to obtain a docu-
ment’s representation. We use the output of each compo-
sition function as document features and we evaluate both
their classification performance as well as the performance
of their concatenation:

zconc(doc) = [zavg(doc), zmin(doc), zmax(doc)]

where z(doc) is the representation of a document and zx(doc)
is the result of applying the composition x ∈ {avg,max,min}
element-wise, in the distributed vectors of the words of the
documents. For instance, assuming we want the represen-
tation of “harsh winter”, the composition function requires
the vector representations of the words “harsh” and “win-
ter”. Then, applying the max function will produce a vector
of the same dimensionality with the original representations
where each element will have the maximum value of the cor-
responding elements of the original word representations.
In this process, we assume access to a vocabulary of dis-
tributed representations, where each word is associated with
a D-dimensional vector. This vocabulary, which we assume
readily available, may have been generated beforehand.

Table 1 shows the data we use throughout the paper.
They are abstracts of biomedical texts from PubMed re-
leased by the BioASQ challenge organisers [28] as well as
texts from Wikipedia [22]. To obtain the dictionary of word
embeddings we used the skipgram model of word2vec tool
[17]. We have kept the tool’s default parameters for skip-
gram apart from the number of iterations that we have set to
15. For training the representations, we used 10M PubMed
abstracts and we added 2.5M Wikipedia documents for bet-
ter generalization (“Train Data” of Table 1). In the pre-
processing steps we applied lower-casing, we space-padded
the punctuation symbols and we filtered the words with
less than 5 occurrences. For classification purposes we used
the remaining PubMed abstracts from the released data.
We created three classification datasets: “PubMedx” with
x ∈ {1, 000, 5, 000, 10, 000} being the x most common classes
in the data. We performed a stratified split in train-test
(200K-25K instances) parts. In the experiments hereafter,
we use SVMs with linear kernel which have been widely used

Document length (in words)

<100 100-200 200-300 300-400 >400

D=50 0.312 0.268 0.266 0.282 0.307
D=200 0.365, 0.339 0.337 0.345 0.359
D=400 0.427 0.400 0.396 0.404 0.409

Table 2: The impact of the document length on the
classification performance (micro F1 measure) when
using avg representations and the embeddings di-
mension is D ∈ {50, 200, 400}. The representations
perform better on smaller documents, which is in
line with the outcome that the avg representations
do not capture enough information for large docu-
ments.

for text classification. The λ value that controls the impor-
tance of the regularization term in the optimization prob-
lem was selected using 5-fold cross validation on the training
data of each experiment and for each representation. The
classification problem is multi-label: each instance is associ-
ated with several classes as shown in Table 1. We cope with
the multi-label problem using a binary relevance approach
[29]. For SVMs, tackling the multi-label problem with bi-
nary relevance results in predicting for each instance every
label with positive distance from the separating hyperplanes
of the one-vs-rest binary problems. If the classifier does not
return any label for an instance, the most common label of
the training data is assigned. For our implementations, we
have used Python’s Scikit-Learn [23].

We now present results for classification experiments on
the PubMed1,000 and PubMed10,000 datasets when the de-
scribed composition functions are used. Figure 1 shows the
scores for the F1 measure obtained on the test data, when
varying the size of the training data. From the Figure, first
note that the avg function performs better compared to both
min and max. The latter two, perform equally but they are
not competitive. However, the best results are consistently
obtained with the concatenation (conc) of the outputs of
the three composition functions. Interestingly, adding the
min and max representations creates a richer representation
that benefits the performance. To this direction, note the
steep increase in the performance of conc representations
with the availability of training data: being richer, those
representations have bigger discriminative power. Depend-
ing on the dataset and the dimension of the representations,
the achieved improvements using conc vary from ∼3-5 F1

points which is important for such problems. We believe
that the avg function does not retain enough information
for large documents, given that they consist on average of
more than 200 words (Table 1). To this end, Table 2 re-
ports the micro F1 measure for the PubMed10,000 dataset,
with respect to the document length in words. Note that
the best performance is achieved for smaller documents in-
dependently of the embedding dimension.

Another observation from Figure 1 and Table 2 concerns
the effect of the dimension of word representations in the
classification performance. Representations of bigger di-
mensions benefit performance. In fact, increasing the di-
mension from 50 to 400, improves the F1 measure for conc
for PubMed1,000 (resp. PubMed10,000) by ∼7 (resp. ∼13)
points. Summarizing, we highlight here two of the advan-
tages of the proposed approach: (i) although simple, our
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Figure 1: Classification performance of the different composition functions on the PubMed1000 and
PubMed10000 datasets with representation dimensions D ∈ {50, 100, 200, 400}.

composition functions have yielded significant performance
improvements and, (ii) their application on large datasets is
naturally parallelizable, hence, they can be easily applied on
real, large scale problems.

3. COMBINATION OF DISTRIBUTED AND
ONE-HOT-ENCODING SCHEMES

In the previous section we have shown that the concate-
nated representations obtained by the output of the com-
position functions achieved the best classification perfor-
mance. We, now, compare them with the traditional one-
hot-encoding representations. We focus on two ways of rep-
resenting text: (i) by using tf-idf representations of uni-
grams, and (ii) by employing a hash function [5, 27]. For
the former, to generate the tf-idf representations we used
sub-linear term frequency counts multiplied by their respec-
tive smoothed inverse document frequency, i.e., for a term
w we have (1 + log(tfw)) ∗ (idfw + 1). For the latter, the
hash function, given a text string, transforms it on a numer-
ical value in a pre-specified space, that is used as the index
to generate a vector representation. Increasing the output
dimension of the hash functions reduces the probability of
collisions, i.e. different words mapped on the same vector
indices, but also increases the output vector size. We inves-
tigate this trade-off in Figure 2: we present the effect of the
size of the hash representations with respect to classification
performance for PubMed5,000 and PubMed10,000 which have
the biggest vocabulary size. We also report exact timings of
each scenario, executed on 10 cores of an Intel(R) Xeon(R)
CPU E5-2640 v3 @ 2.60GHz. From the figure, note that af-
ter 70K features the classification performance does not im-
prove when increasing the size of the feature space. On the
other hand, increasing the representation’s dimension, the
training time also increases. For reference, tf-idf represen-

tations in the same computational setting need 602 sec. and
1203 sec. for PubMed5,000 and PubMed10,000 respectively.
As a result, we set the hash dimension to 70,000 features.
Note the significant dimensionality reduction achieved, given
the vocabulary sizes of our problems reported in Table 1.

Table 3 details the scores achieved with regard to the rep-
resentations used. We first discuss the performance when
single representations are used: x conc, tf-idf and hash. No-
tice that tf-idf performs better than both x conc and hash,
with the latter achieving the lowest performance. The per-
formance of the three representations on PubMed1,000 is
comparable, but in the bigger classification problems tf-idf
and performs considerably better. We, thus, consider the tf-
idf representations as our baseline model, and we examine
how the models with concatenated representations behave
compared to it.

We investigate now whether the fusion of distributed doc-
ument representations with the one-hot-encoding represen-
tations benefits the classification performance. The last
two lines of Table 3 present the performance of the fu-
sion, by concatenation, of the embedding representations
with D ∈ {100, 200, 400} with hash and tf-idf. In the ex-
periments, both hash and tf-idf consistently achieve bet-
ter performance when combined with the distributed rep-
resentations. For instance, for PubMed10,000 and D = 400
the tf-idf (resp. hash) representations improve in absolute
numbers by 2 (resp. 3.5) F1 points. We have performed
two-sided student’s t-tests (p < 0.01) to compare whether
the improvements obtained for each classification problem
are statistically significant compared to using tf-idf repre-
sentations. Those results, indicated by (†) in Table 3, reveal
that the concatenation of tf-idf with distributed represen-
tations improves the classification performance in a statisti-
cally significant way. In addition to the important improve-
ments, note than in the fused representations, the effect of



PubMed1,000 PubMed5,000 PubMed10,000

hash 0.63 0.427 0.456
tf-idf 0.65 0.469 0.492

D=100 D=200 D=400 D=100 D=200 D=400 D=100 D=200 D=400

x conc 0.592 0.614 0.626 0.362 0.41 0.436 0.386 0.434 0.454
hash+x conc 0.651 0.654 0.646 0.464 0.476 0.473 0.488 0.495 0.491
tfidf+x conc 0.66† 0.66† 0.656 0.484† 0.486† 0.487† 0.507† 0.507† 0.512†

Table 3: Classification performance of the different representations. The upper part of the table presents
one-hot-encoding methods, while the bottom part methods that depend on the dimensionality of the dis-
tributed representations. We report the best performance obtained when the size N of the training data
N ∈ {1, 50, 100, 150, 200} × 103. The best achieved performance per classification problem is shown in bold. We
have performed statistical significance tests to test if improvements obtained compared to tf-idf representa-
tions are statistically important, which is noted by putting a dagger (†) to the accuracy scores.
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Figure 2: The effect of the vector size generated
by the hash function in terms of classification per-
formance and time efficiency for PubMed5,000 and
PubMed10,000.

D diminishes. For instance in PubMed1,000, one can obtain
the optimal performance using embedding dimensions with
D < 400 and similar observations can be made in the rest
of the datasets.

4. CONCLUSION AND DISCUSSION
In this work we have restricted ourselves in representa-

tions learned in the word level. This is advantageous in
terms of speed since the dictionary of representations can
be generated offline. Then, applying composition functions
is naturally parallelizable and fast for prediction. However,
this poses the challenge of having robust composition func-
tions, which if carefully selected, can result in performance
gains such as those reported above. Also, similarly to the
bag-of-words paradigm, it does not take into account the
word order and the words’ grouping in coherent segments
like sentences or phrases.

In this line, it would be interesting to further investigate
how more complex embeddings such as paragraph vectors
[14] perform. Even if such approaches are computation-
ally expensive in the document level, previous research has
shown their effectiveness on the sentence level. Hence, a
direct extension of this work is to test the investigated com-
position functions with sentence level representations. In
terms of applications, those sentence representations can be

directly used to evaluate the effectiveness of the embeddings
and the composition functions. Importantly, their can be
evaluated simultaneously in different levels of text granular-
ity from sentences to documents in the framework of passage
retrieval and document classification from instance.

Another interesting line of research concerns the memory
efficiency of such dense representations. Recent research ef-
forts [1, 8] have investigated ways of compressing the learned
(or composed) representations using either linear (e.g. PCA)
or non-linear (e.g. auto-encoders) approaches to decrease
the memory requirements or the dimension of the represen-
tations. Such approaches, apart from having a positive effect
on the memory footprint, also have a positive effect on the
required computational requirements for training.

In this work we have evaluated different composition func-
tions for obtaining document-level representations using dis-
tributed embeddings of words. Summarizing our findings,
adding the concatenated vector of word-level skip-gram de-
rived features to tf-idf unigrams performs better than tf-idf
features alone. Also, the result seems to be more pronounced
as the representations’ cardinality increases and as the out-
put label space increases. Given the obtained improvements,
we have also outlined promising future research directions.
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