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ABSTRACT
In this paper we investigate the effect of the heuristic IR
constraints on IR term-document scoring functions within
the recently proposed function discovery framework. In the
earlier study the constraints were empiricaly validated as
a whole. Moreover, only the group of form constraints was
utilized and the other prominent group, the adjustment con-
straints, was not considered. In this work we will investigate
all the constraints individually and study them with two dif-
ferent term frequency normalization, namely normalization
scheme used in DFR models and relative term count nor-
malization used in language models.
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1. INTRODUCTION
Fang et. al. [3] proposed a set of constraints which all

“good” IR scoring functions should follow. These are divided
in two categories, form and adjustment constraints (details
are in Section 3). Among them Clinchant and Gaussier[1, 2]
expressed the form conditions in analytical forms in terms
of first and second order derivatives of the IR scoring func-
tion. They also studied these constraints under pseudo-
relevavance feedback (PRF) framework and derived condi-
tions that PRF models should satisfy. However, these stud-
ies did not consider the other important category - the ad-
justment constraints.

In the recently proposed function discovery approach [5]
the form constraints are successfully used as a tool to prune
the search space. It is ensured that the generated functions
satisfy the form constraints. An experimental validation of
these constraints is also provided in light of the proposed
framework, which is inline with other empirical validations
of these constraints [6, 4].

However, in the original study these constraints are con-
sidered together as a single module. In this paper we will
investigate the effect of each individual form constraint on
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the scoring functions through function discovery framework.
We will also investigate two adjustment constraints, which
were not considered in the original work. We will do so
by taking into account two different term frequency nor-
malization techniques, namely the normalization used in di-
vergence from randomness (DFR) models and relative term
count normalization used in language models.

2. FUNCTION DISCOVERY FRAMEWORK
The general form of retrieval status value or RSV of a

document d with respect to a query q can be formulated as:

RSV(q, d) =
∑
w∈q

a(tqw) g(w, d)

Where, tqw is the number of occurrences of term w within
query q, a : R+ → R+ is a positive real-valued function
usually set to the identity function and the function g(w, d)
is called a scoring function which assigns a score to d for
a term w ∈ q. Standard IR models like BM25, language
models, information based models, DFR models etc. all fit
in the form of the above equation; and depending on the
model in use, the form of the scoring function varies. Table
1 summarizes notations used throughout the paper.

tdw term frequency - # of occurrences of term w
in document d

tqw # of occurrences of term w in query q
xdw normalized version of term frequency
Nw document frequency - # of documents in the

collection containing w
yw normalized version of document frequency
N # of documents in a given collection
ld Length of document w in # of terms
lavg Average length of documents in a given collection

Table 1: Notations

The function discovery approach [5] deploys a context free
grammar to generate closed form formulas to be used as scor-
ing functions. Two variables are considered in that gram-
mar, normalized term frequency denoted by xdw and nor-
malized document frequency denoted by yw. A real valued
constant is also considered, but in experiments it is taken
as 1 which we follow here as well. Thus scoring functions in
this framework can also be written as g(xdw, yw).

Normalized term frequency can be expressed as a function
of tdw and ld, in the form NTF (tdw, ld). [5] considers normal-



ization used in DFR models (DFR normalization) and in
this study we also consider relative term count (RTC) nor-
malization commonly used in language models. Thus one
has:

NTF (tdw, ld) =

 tdw log
(

1 + c
lavg

ld

)
DFR normalization

tdw

(
lavg

ld

)
RTC normalization

Here c is a free parameter which is taken as 1, its default
value, in this work.

The normalized document frequency of a term w consid-
ered in [5], as well as in this study, is the average document
frequency of w with respect to the total number of docu-
ments in the collection, yw = Nw

N .

3. HEURISTIC IR CONSTRAINTS
Fang et. al. [3] proposed a set of hypothetical constraints

which lays a guideline of how a good IR scoring function
should behave. The constraints are categorized into two
groups, four form constraints and two adjustment constraints.

3.1 Form Constraints
Four form constraints define the general form of the scor-

ing function g. These constraints are expressed in the fol-
lowing analytical forms [1]:

∂g

∂tdw
> 0;

∂2g

∂(tdw)2
< 0;

∂g

∂Nw
< 0;

∂g

∂ld
< 0

Considering DFR term frequency normalization and y =
Nw
N , [5] has shown that it is sufficient for a scoring function
g to satisfy the following three conditions, denoted by C1,
C2 and C3 respectively:

∂g

∂x
> 0︸ ︷︷ ︸

C1

,
∂2g

∂x2
< 0︸ ︷︷ ︸

C2

,
∂g

∂y
< 0︸ ︷︷ ︸

C3

For RTC normalization it is also trivial to show that these
three conditions are sufficient for any scoring function to
satisfy all the form constraints.

During function generation, it is hence ensured that the
generated scoring functions must satisfy C1, C2 and C3. As
these constraints are same for both DFR and RTC normal-
ization, all the generated scoring functions will satisfy the
constraints for any of the two normalization schemes.

3.2 Adjustment Constraints
Two adjustment constraints aim to adjust the function g

satisfying the form constraints by regulating the interaction
between term frequency tdw and document length ld. These
two constraints are:

C4 Let q be a query. ∀k > 1, if d1 and d2 are two documents
such that ld1 = k×ld2 and for all terms w, td1w = k×td2w ,
then RSV(q, d1) ≥ RSV(q, d2).

C5 Let q = w be a single term query, for two documents d1
and d2 if td1w > td2w and ld1 = ld2 + (td1w − td2w ), then
RSV(q, d1) ≥ RSV(q, d2).

Document length effect (fourth form constraint) penalizes
longer documents, whereas the first adjustment constraint
C4 avoids over-penalizing long documents. The second ad-
justment constraint C5 ensures that a longer document must

not be penalized over a shorter document if the excess length
is due to the occurrences of the query term.

We present here two properties which will help to study
the effect of adjustment constraints over the function dis-
covery framework.

Property 1. If a function generated by the function dis-
covery approach using RTC and DFR normalization satisfies
C1, C2 and C3, then the function also satisfies C4.

Property 2. If a function generated by the function dis-
covery approach using RTC normalization satisfies C1, C2

and C3, then the function satisfies C5. If the function is
generated using DFR normalization and satisfies C1, C2 and

C3, then it satisfies C5 when td2w ≤ p.f1(p)
f1(0)−f1(p)

where f1(u) =

log
(
ld2+u+β

ld2+u

)
and β = c.lavg, where td2w , ld2 are as explained

in the definition of C5.

We now proceed to prove these properties. We do so by
first proving the two following lemmas.

Lemma 1. For a term w if there are two documents d1
and d2 such that for any k > 0, their normalized term
frequencies are xd1w = NTF (k × td2w , k × ld2) and xd2w =
NTF (td2w , ld2) respectively, then xd1w ≥ xd2w .

Proof. Assuming RTC normalization, one has xd1w =
xd2w , thus proving the property.
For DFR normalization it can be shown that:

xd1w − xd2w = td2w log

(
(k + α)k

k(1 + α)

)
assuming α = c

lavg
ld2

Applying binomial expansion:

(k + α)k − k(1 + α) = (kk − k) + (kk − k)α+ . . .+ α > 0

This is because the term (kk − k) > 0 as k > 0, and all
the remaining terms of the expression are positive. Thus we

have
(

(k+α)k

k(1+α)

)
> 1 giving that xd1w − xd2w ≥ 0 as td2w ≥ 0,

which proves the property for DFR normalization.

Lemma 2. For a term w if there are two documents d1
and d2 such that for any integer p > 1, their normalized
term frequencies are xd1w = NTF (td2w + p, ld2 + p) and xd2w =
NTF (td2w , ld2) respectively, then:

- for RTC normalization xd1w ≥ xd2w ,

- for DFR normalization xd1w ≥ xd2w when td2w ≤ p.f1(p)
f1(0)−f1(p)

where f1(u) = log
(
ld2+u+β

ld2+u

)
and β = c.lavg.

Proof. For RTC normalization xd1w −xd2w =
p(ld2−t

d2
w )

ld2 (ld2+p)
≥

0 since ld2 ≥ td2w , which proves the property.
For DFR normalization it can be derived that:

xd1w − xd2w = (td2w + p) log

(
ld2 + p+ β

ld2 + p

)
− td2w log

(
ld2 + β

ld2

)
(assuming β = c.lavg)

= (td2w + p)f1(p)− td2w f1(0)

Let f2(td2w ) = (td2w + p)f1(p) − td2w f1(0), then f2(td2w ) is a
strictly decreasing function with td2w as f ′2(td2w ) < 0. We have
f2(0) = p.f1(p) > 0, but f2(td2w )→ −∞ as td2w → +∞. Thus

f2(td2w ) crosses zero at td2w = p.f1(p)
f1(0)−f1(p)

. So xd1w − xd2w ≥ 0

when td2w ≤ p.f1(p)
f1(0)−f1(p)

, thus proving the property for DFR

normalization.



Since queries are considered as set of terms and the or-
der is not considered, RSV(q, d1) ≥ RSV(q, d2) is equivalent
to g(w, d1) ≥ g(w, d2) (here we used the original form of
the scoring functions as in Eq. 2). As g is satisfying C1,
i. e. ∂g

∂xdw
> 0, one has g(xd1w , y) ≥ g(xd2w , y) iff xd1w ≥ xd2w .

Hence the adjustment constraint C4 boils down to the Lemma
1, which is true, as shown above, for all the scoring functions
generated using the function discovery approach with both
DFR and RTC normalization. Thus all generated scoring
functions are satisfying C4 proving Property 1.

Suppose p > 0 is an integer constant such that td1w =
td2w + p. Then this constraint can be rewritten as, if ld1 =
ld2 + p then RSV(q, d1) > RSV(q, d2). Again as g is satisfying
C1, one has g(xd1w , y) ≥ g(xd2w , y) iff xd1w ≥ xd2w . Thus the
adjustment constraint C5 becomes Lemma 2 and is always
satisfied by the generated functions if RTC normalization is
used. But for DFR normalization C5 is satisfied only when

td2w ≤ p.f1(p)
f1(0)−f1(p)

where f1(u) = log
(
ld2+u+β

ld2+u

)
and β =

c.lavg. This proves Property 2. So for DFR normalization
a generated function satisfies C5 for not so high tdw values
which is the case in most practical scenarios.

4. EXPERIMENTAL EVALUATION
Here we examine the effect of each constraint separately.

Experiments are performed on six IR collections (Table 2),
five from TREC (trec.nist.gov) and one from CLEF (www.
clef-campaign.org) campaigns. These collections are in-
dexed using Terrier IR Platform v3.5 (terrier.org). Pre-
processing steps in creating an index include stemming using
Porter stemmer and removing stop-words using the stop-
word list provided by Terrier. Generated functions are also
implemented in Terrier. We specify by CV , respectively by

Collection N lavg Index size #queries

TREC-3 741,856 261 427.7 MB 50
TREC-5 524,929 339 378.0 MB 50
TREC-6,7,8 528,155 296 373.0 MB 50
CLEF-3 169,477 301 126.2 MB 60

Table 2: Statistics of various collections used in our
experiments, sorted by size.

CN , the set of functions which satisfy all the constraints,
respectively none of the constraints of a given length, and
by CiN the set of functions which only satisfy constraint Ci.
Performances of CV and CN are compared to empirically jus-
tify the usefulness of the heuristic IR constraints as a whole.

An initial intuition can be made by the sizes of the sets
C1N , C2N and C3N . Figure 1 shows the number of functions in
each of the sets till length 8. Clearly the number of functions
satisfying C2 is the minimum, whereas the number of func-
tions satisfying C1 is the maximum. Thus the constraint C2

is the harshest one, whereas C1 is the loosest one. Another
trivial yet interesting observation is that CN is the biggest
set and CV is the smallest one among all the five sets.

From each of the sets CV , C1N , C2N , C3N and CN , 10 subsets
are created. Each subset contains 100 randomly selected
sample functions chosen from the initial set. When creating
a subset, 100 functions are selected without replacement.
When creating another different subset, again all functions
are considered for selection. Thus a function may be re-

Figure 1: Number of functions in the sets CN , C1N ,
C2N , C3N and CV till length 8.

peated in different subsets but never within the same subset.
These samples are tested on CLEF-3 and TREC-3,5,6,7,8.
For each function MAP is noted and it is averaged over all
100 functions within a single sample set. Finally, average

(a) DFR

(b) RTC

Figure 2: Average MAP of the sets CN (2), C1N (�), C2N
(�), C3N (�) and CV (�) till length 8 with (a) DFR
and (b) RTC normalization.



performance over 10 sample sets is reported.
Figure 2 shows a plot of average MAP of 10 sample sets

from all five sets CN , C1N , C2N , C3N and CV with DFR and
RTC normalization. As expected CV is always best and CN
is always worst among the five sets. Performance of other
three sets C1N , C2N and C3N are in between CV and CN . Both
for DFR and RTC, C2 is best performing on 4 out of 6 collec-
tions. But for TREC-3 and TREC-5 C3 is slightly better than
C2. There is no deterministic comparative pattern between
C1 and C3. All possible relative orders in terms of perfor-
mance between C1 and C3 are visible. As for example in case
of DFR (Figure 2(a)) C1>C3 on CLEF-3, C1<C3 on TREC-3,5

and C1≈C3 on TREC-6,7,8. Though for RTC C1<C3 for 4
out of 6 collections (Figure 2(b)). In summary the general
trend is that C2 is the most effective among three constraints
although the plots display an inconclusive pattern. Thus it
can be said that the relative effectiveness of the constraints
is highly dependent on the collection in hand.

Above experiments are performed to study the effects of
each constraint. But these experiments also revealed that
combination of all the constraints (i.e. set CV ) always per-
forms best. Hence for all practical purposes it is always
better to utilize all the constraints together.

5. CONCLUSION
In this paper we showed that the first adjustment con-

straint is satisfied by all the functions generated using the
approach proposed in [5] with both DFR and RTC normal-
ization. However, the second adjustment constraint is al-
ways satisfied by all the generated functions for RTC nor-
malization, but it is satisfied only for not so high tdw values
for DFR normalization. We experimentally studied the ef-
fects of each form constraint separately and found that C2

is the harshest among the three as it allows minimum num-
ber of functions. According to performances, for both DFR
and RTC normalization, on most collections C2 is more ef-
fective than C1 and C3 and there is no deterministic pattern

between C1 and C3.
Here we have studied the constraints for DFR and RTC

normalization, as three constraints C1, C2 and C3 takes the
same form with these two normalization schemes. For Okapi,
the other popular normalization scheme, the forms of these
constraints changes thus generating entirely different sets of
valid functions.
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