Incorporating Prion Knowledge into a Transductive Ranking Algorithm for Multi-Document Summarization


Massih-Reza Amini(2), Nicolas Usunier(1)
(1) Laboratoire d'Informatique Paris 6              (2) National Research Council Canada
              104, avenue du président Kennedy                     123, boulevard Alexandre Taché         
                  75016 Paris                                                   Gatineau, Canada         


This paper presents a transductive approach to learn ranking functions for extractive multi-document summarization. At the first stage, the proposed approach identifies topic themes within a document collection, which help to identify two sets of relevant and irrelevant sentences to a question. It then iteratively trains a ranking function over these two sets of sentences by optimizing a ranking function over these two sets of sentences bu optimizing a ranking loss and fitting a prior model built on keywords. The output of the function is used to find further relevant and irrelevant sentences. This process is repeated until a desired stopping criterion is met.