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Abstract. Using the appropriate metric is crucial for the performance
of most of machine learning algorithms. For this reason, a lot of effort has
been put into distance and similarity learning. However, it is worth noting
that this research field lacks theoretical guarantees that can be expected
on the generalization capacity of the classifier associated to a learned
metric. The theoretical framework of (ε, γ, τ)-good similarity functions
[1] provides means to relate the properties of a similarity function and
those of a linear classifier making use of it. In this paper, we extend this
theory to a method where the metric and the separator are jointly learned
in a semi-supervised way, setting that has not been explored before. We
furthermore prove the robustness of our algorithm, which allows us to
provide a generalization bound for this approach. The behavior of our
method is illustrated via some experimental results.

1 Introduction

The importance of the underlying geometry of the data for improving the perfor-
mance of learning algorithms has determined the expansion for a new research
area termed metric learning [5]. From the point of view of the metric, most of
these approaches focus on distance learning [3,6,7,14,16], but similarity learning
has also attracted a growing interest [2,8,11,13], as the cosine similarity is more
appropriate for certain problems than the euclidean distance. More recently, [1]
have proposed the first framework that formalizes the relation between the qual-
ity of a metric and that of a classification algorithm making use of them. This
broad framework, that can be used with with a large range of similarity func-
tions, provides generalization guarantees on a linear classifier learned from the
similarity. However, to enjoy these guarantees, the similarity function is assumed
to be known beforehand and to satisfy (ε, γ, τ)-goodness properties. The main
limitation is that [1] does not provide any algorithm for learning such similarities.

In order to complete this framework, [4] have developped a method that in-
dependently learns an (ε, γ, τ)-good similarity. It is then plugged into the initial
algorithm [1] to learn the linear separator using the metric. However, the similar-
ity learning step is done in a completely supervised way while the (ε, γ, τ)-good
framework opens the door to the use of unlabeled data.



In this paper, our objective is to jointly learn the metric and the classifier in
the theoretical framework of (ε, γ, τ)-good similarities. Furthermore, and unlike
[4], the whole learning process is done in a semi-supervised way. To our knowl-
edge, joint learning has not been explored before for semi-supervised metric
learning. Enforcing (ε, γ, τ)-goodness allows us to preserve the theoretical guar-
antees from [1]3. Lastly, proving the algorithmic robustness [17] of our method
leads to consistency bounds for different types of similarity functions.

The remainder of this paper is organized as follows: Section 2 reviews some
previous results in metric and similarity learning and presents the theory of
(ε, γ, τ)-good similarities. Section 3 introduces our method that jointly learns
the metric and the linear classifier, followed by generalization guarantees for
our formulation. We show how to integrate different similarity functions in our
setting. Finally, Section 4 features an experimental study on various standard
datasets.

2 Notations and Related Work

In our developments, vectors are denoted by lower-case bold symbols (x) and
matrices by upper-case bold symbols (A). A pairwise similarity function over
X ⊆ Rd is defined as K : X × X → [−1, 1], and the hinge loss as [c]+ =
max(0, 1 − c). We note the L1 norm by || · ||1 and the L2 norm by || · ||2. The
purpose of metric learning is to learn the parameters of a distance or similarity
function that best fits the underlying geometry of the data. The learning is
usually done using side information, expressed as pair-based (x and x′ should be
(dis)similar) or triplet-based constraints (x should be more similar to x′ than to
x′′). The metric is commonly represented by a matrix of values resulting from
solving an optimization problem.

Most of state-of-the-art approaches focus on learning a Mahalanobis distance,
defined as dA(x,x′) =

√
(x− x′)TA(x− x′). The distance is parameterized by

the symmetric and positive semi-definite (PSD) matrix A ∈ Rd×d. This metric
implicitly corresponds to computing the Euclidean distance after linearly pro-
jecting the data to a different feature space. The PSD constraint on A ensures
dA is a proper metric. Setting A to the identity matrix gives the Euclidean dis-
tance. In this context, LMNN [16] is one of the most widely-used Mahalanobis
distance learning methods. The constraints are pair- and triplet-based, derived
from each instance’s nearest neighbors. The optimization problem they solve is
convex and has a special-purpose solver. The algorithm works well in practice,
but is sometimes prone to overfitting due to the absence of regularization, es-
pecially when dealing with high dimensional data. Another limitation is that
enforcing the PSD constraint on A is computationally expensive. Workarounds
include using a specific solver or opting for information-theoretic approaches.
ITML [6] was the first method to use LogDet divergence for regularization, pro-
viding an easy way for ensuring that A is a PSD matrix. However, the learned
metric A is strongly influenced by the initial value A0, which is an important
shortcoming, as A0 is handpicked. LRML [10] learns Mahalanobis distances with



manifold regularization using a Laplacian matrix in a semi-supervised setting.
It performs particularly well compared to fully supervised methods when side
information is scarce.

More generally, Mahalanobis distance learning faces two main limitations:
firstly, enforcing the PSD and symmetry constraints on A is costly and often
rules out natural similarity functions; secondly, although state-of-the-art Maha-
lanobis distance learning methods yield better accuracy than using the Euclidean
distance, no theoretical guarantees are provided to establish a link between the
quality of the metric and that of the classifier that makes use of it. [1] defined the
(ε, γ, τ)-good similarity functions based on non PSD matrices, which uses simi-
larities between labeled data and unlabeled reasonable points (roughly speaking,
the reasonable points play the same role as that of support vectors in SVMs).
Their theory was the first stone to establish generalization guarantees for a lin-
ear classifier that would be learned by making use of such similarities. Their
results are derived based on the definition of a good similarity function for a
given problem: considering a set of ”reasonable points”, a (1− ε) proportion of
examples x are on average 2γ more similar to random reasonable examples x′ of
their own label than to random reasonable examples x′ of the other label. For
this, the proportion of reasonable points from the sample must be greater than
τ . In their definition, the margin violation is averaged over all reasonable points
which leads to a more flexible setting than pair- or triplet-based constraints.
If K is (ε, γ, τ)-good and enough reasonable points are available, there exists a
linear separator α with error arbitrarily close to ε in the space φS . Finding the
separator is done by solving the following optimization problem:

min
α

{ dl∑
i=1

[
1−

du∑
j=1

αj l(xi)K(xi,xj)
]
+

:

du∑
j=1

|αj | ≤ 1/γ
}
.

The previous problem can be solved efficiently by linear programming. Also,
tuning the value of γ (L1 constraint) will produce a sparse solution. The main
limitation of this approach is that the similarity function K is considered known.

This limitation has been partly overcome by SLLC [4] by optimizing the
(ε, γ, τ)-goodness of a bilinear similarity function under Frobenius norm reg-
ularization. The learned metric is then used to build a global linear classifier
with guarantees. Moreover, a bound on the generalization error of the asso-
ciated classifier through uniform stability can be obtained. More recently, [9]
derived generalization bounds for similarity learning formulations that are reg-
ularized with more general matrix-norms, based on the Rademacher complexity
and Khinchin-type inequalities.

There are three main distinctions between these approaches and our work.
Firstly, we propose a method that jointly learns the metric and the linear sepa-
rator at the same time. This allows us to make use of the semi-supervised setting
presented by [1] to learn well with only a small amount of labeled data. Secondly,
our setting uses the algorithmic robustness to establish bounds, which enables us
to characterize our algorithm by exploiting the geometry of the data; that is not
the case with the Rademacher complexity. Lastly, regularization is integrated



through constraints in our setting, as explained in the following sections, which
leads to a formulation with less hyperparameters.

3 Learning Consistent Good Similarity Functions

In this section, we present our semi-supervised framework for jointly learning
a similarity function and a linear separator from data. We also provide a gen-
eralization bound for our approach based on the recent algorithmic robustness
framework [17]. We end this section by presenting some particular similarity
functions that can be used in our setting.

3.1 Optimization Problem

Let S be a sample set of dl labeled examples (x, l(x)) ∈ Z = X × Y (X ⊆
Rd) and du unlabeled examples. We assume that X is bounded, which can be
expressed, after normalization, by ||x||2 ≤ 1. Let KA(x,x′) be a generic (ε, γ, τ)-
good similarity function, parameterized by the matrix A ∈ Rd×d. We want to
optimize the goodness of KA w.r.t. the empirical loss of a finite sample. To
this end, we must find the matrix A and the global separator α ∈ Rdu that
minimize the loss function (in ¡our case, the hinge loss) over the training set S.
Our learning algorithm takes the form of the following constrained optimization
problem.

min
α,A

1

dl

dl∑
i=1

1−
du∑
j=1

αj l(xi)KA(xi,xj)


+

(1)

s.t.

du∑
j=1

|αj | ≤ 1/γ (2)

A diagonal, |Akk| ≤ 1, 1 ≤ k ≤ d, (3)

The novelty of this algorithm is the joint optimization over A and α: by
solving problem (1), we are learning the metric and the separator at the same
time. A significant advantage of this formulation is that it extends the semi-
supervised setting from the separator learning step to the metric learning, and
the two problems are solved using the same data. This method can naturally
be used in situations where one has access to few labeled examples and many
unlabeled ones: the labeled examples are used in this case to select the unlabeled
examples that will serve to classify new points. Another important advantage
of our technique is that the constraints on the pair of points do not need to be
satisfied entirely, as the loss is averaged on all the reasonable points. In other
words, this formulation is less restrictive than pair or triplet-based settings.

Constraint (2) takes into account the desired margin γ and is the same as in
[1]. The new Constraint (3) serves two purposes: first, it restricts the similarity



KA, thus preserving its (ε, γ, τ)-goodness; second, as it bounds the values in the
matrix A, it limits the risk of overfitting, and thus plays the role of regularization
without imposing sparsity. Regularizing metrics through standard L1 or L(1,2)

norms would slowly push the values in the matrix towards zero, which is not
necessarily desirable. Indeed, let f(x) =

∑du
j=1 αjKA(x,xj) be the output of

the linear separator w.r.t. x. For some linear similarities KA(x, x′), such as the
bilinear form KA(x,x′) = xTAx′, computing f(x) boils down to calculating
the similarity between x and the barycenter of the (weighted) unlabeled points,
making sparsity superfluous.

3.2 Consistency Guarantees

We now present a theoretical analysis of our approach. For the purpose of dis-
cussing the algorithmic robustness of the method, let us rewrite the minimization
problem (1) with a more generalized notation of the loss function:

min
1

dl

dl∑
i=1

`(A,α, zi = (xi, l(xi))),

where `(A,α, zi = (xi, l(xi))) =
[
1−

∑du
j=1 αj l(xi)KA(xi,xj)

]
+

is the instan-

taneous loss estimated at point (xi, l(xi)). Therefore, the optimization prob-
lem (1) under constraints (2) and (3) reduces to minimizing the empirical loss

R̂` = 1
dl

∑dl
i=1 `(A,α, zi) over the training set S. To begin with, let us recall the

notion of robustness of an algorithm A.

Definition 1 (Algorithmic Robustness [17]). Algorithm A is (M, ε(·))-robust,
for M ∈ N and ε(·) : Zdl → R, if Z can be partitioned into M disjoint sets,
denoted by {Ci}Mi=1, such that the following holds for all S ∈ Zdl :

∀z = (x, l(x)) ∈ S,∀z′ = (x′, l(x′)) ∈ Z,∀i ∈ [M ] :

if z, z′ ∈ Ci, then |`(A,α, z)− `(A,α, z′)| ≤ ε(S).

Roughly speaking, an algorithm is robust if for any example z′ falling in the
same subset as a training example z, the gap between the losses associated with
z and z′ is bounded. Subsets are constructed using a partitioning of Z based on
covering numbers [12]. Two examples are close if they belong to the same region,
implying that the norm between them is lesser than a fixed quantity ρ (see [17]
for details about building the covering). Now we can state the first theoretical
contribution of this paper.

Theorem 1. Given a partition of Z into M subsets {Ci} such that z = (x, l(x))
and z′ = (x′, l(x′)) ∈ Ci and l(x) = l(x′), and provided that KA(x,x′) is l-
lipschitz w.r.t. its first argument, the optimization problem (1) with constraints (2)
and (3) is (M, ε(S))-robust with ε(S) = 1

γ lρ, where ρ = supx,x′∈Ci
||x− x′||.



Proof.

∣∣`(A,α, z)− `(A,α, z′)
∣∣ ≤ ∣∣ du∑

j=1

αj l(x
′)KA(x′,xj)−

du∑
j=1

αj l(x)KA(x,xj)
∣∣ (4)

=
∣∣ du∑
j=1

αj(KA(x′,xj)−KA(x,xj))
∣∣ ≤ du∑

j=1

|αj | ·
∣∣KA(x′,xj)−KA(x,xj)

∣∣ (5)

≤
du∑
j=1

|αj | · l||x− x′|| ≤ 1

γ
lρ (6)

Setting ρ = supx,x′∈Ci
||x−x′||1, we get the Theorem. We get Inequality (4)

from the 1-lipschitzness of the hinge loss; Inequality (5) comes from triangle
inequality; the first inequality on line (6) is due to the l-lipschitzness of KA(x,xj)
w.r.t. its first argument, and the result follows from Condition (2). ut

We now give a PAC generalization bound on the true loss making use of the
previous robustness result. Let R` = Ez∼Z`(A,α, z) be the true loss w.r.t. the

unknown distribution Z and R̂` = 1
dl

∑dl
i=1 `(A,α, zi) be the empirical loss over

the training set S. We have the following concentration inequality that allows
one to capture statistical information coming from the different regions of the
partition of Z.

Proposition 1. [15] Let (|N1|, . . . , |NM |) be an i.i.d. multinomial random vari-

able with parameters dl =
∑M
i=1 |Ni| and (p(C1), . . . , p(CM )). By the Bretagnolle-

Huber-Carol inequality we have: Pr
{∑M

i=1

∣∣ |Ni|
dl
− p(Ci)

∣∣ ≥ λ} ≤ 2M exp
(−dlλ2

2

)
,

hence with probability at least 1− δ,
∑M
i=1

∣∣Ni

dl
− p(Ci)

∣∣ ≤√ 2M ln 2+2 ln(1/δ)
dl

.

We are now able to present our generalization bound in the following theorem.

Theorem 2. Considering that problem (1) is (M, ε(S))-robust, and that KA is
l-lipschitz w.r.t. to its first argument, for any δ > 0 with probability at least 1−δ,
we have:

|R` − R̂`| ≤ 1
γ
lρ+B

√
2M ln 2+2 ln(1/δ)

dl
,

where B = 1 + 1
γ is an upper bound of the loss `.

The proof of Theorem 2 follows the one described in [17]. Note that the cover
radius ρ can be arbitrarily small at the expense of larger values of M . As M
appears in the second term, decreasing to 0 when dl tends to infinity, this bound
provides a standard O(1/

√
dl) asymptotic convergence.

As one can note, our main theorems strongly depend on the l-lipschitzness
of the similarity function. We provide below three standard similarity functions
together with their lipschitz property. K1

A and K2
A are linear w.r.t. their argu-

ments, and have the advantage of keeping Problem (1) convex. K3
A is gaussian-

like kernel based on the Mahalanobis distance, and is non linear.



Table 1: Properties of the datasets used in the experimental study.
Balance Ionosphere Iris Liver Pima Sonar Wine

# Instances 625 351 150 345 768 208 178
# Dimensions 4 34 4 6 8 60 13
# Classes 3 2 3 2 2 2 3

Ex. 1 Let K1
A be the bilinear form K1

A(x,x′) = xTAx′. K1
A(x,x′) is 1-lipschitz

w.r.t. its first argument.
Ex. 2 We define K2

A(x,x′) = 1− (x− x′)TA(x− x′), a similarity derived from
the Mahalanobis distance. K2

A(x,x′) is 4-lipschitz w.r.t. its first argument.

Ex. 3 Let K3
A(x,x′) = exp

(
− (x−x′)TA(x−x′)

2σ2

)
. K3

A(x,x′) is l-lipschitz w.r.t.

its first argument with l = 2
σ2

(
exp

(
1

2σ2

)
− exp

( −1
2σ2

))
.

Plugging l = 1 (resp. l = 4 and l = 2
σ2

(
exp

(
1

2σ2

)
− exp

( −1
2σ2

))
) in The-

orem 2, we obtain consistency results for Problem (1) using K1
A(x,x′) (resp.

K2
A(x,x′) and K3

A(x,x′)). As the gap between empirical and true loss presented
in Theorem 2 is proportional with the l-lipschitzness of each similarity function,
we would like to keep this parameter as small as possible. We notice that the
generalization bound is tighter for K1

A than for K2
A. The bound for K3

A depends
on the additional parameter σ, that adjusts the influence of the similarty value
w.r.t. the distance to the landmarks.

4 Experiments

Metric learning state-of-the-art algorithms are mostly designed for a supervised
setting, and usually optimize a metric for kNN classification. It is thus difficult
to propose a totally fair comparative study. We compare our method (JSL –
Joint Similarity Learning) with algorithms from different categories (supervised,
kNN-oriented). The experimental study is conducted on 7 classic datasets taken
from the UCI Machine Learning Repository (Table 1).

4.1 Experimental Setup

For a complete comparison, we analyse two main families of approaches: first, lin-
ear classifiers, for which we consider BBS [1], SLLC [4], linear SVM with L2 regu-
larization and our method, JSL; second, nearest neighbor approaches: ITML [6],
LMNN [16] and LRML [10], for which we report accuracies for 3NN classifica-
tion. All attributes are centered around zero and scaled to ensure ||x||2 ≤ 1.
We randomly choose 15% of the data for validation purposes, and another 15%
as a test set. The training set and the unlabeled data are chosen from the re-
maining 70% of examples not employed in the previous sets. We illustrate the
classification using a restricted quantity of labeled data by limiting the number
of labeled points to 5, 10 or 20 examples per class, as this is usually a reasonable
minimum amount of annotation to rely on. The number of landmarks is either
equal to the size of the training set, either set to 15 points (corresponding to



Table 2: Average accuracy (%) with conf. interval at 95%, 5 labeled points/class.
Lmks. Sim. Balance Ionosphere Iris Liver Pima Sonar Wine

K1
A 85.7±3.5 88.5±2.6 74.5±4.4 63.9±5.3 71.1±3.8 72.3±4.1 87.7±5.0

all pts. K2
A 87.1±2.5 91.0±2.0 71.4±5.9 69.2±3.2 72.9±3.9 71.9±4.2 84.2±6.9

K3
A 81.1±8.5 86.2±2.8 68.2±8.5 58.6±6.3 71.1±4.3 63.9±10.0 83.5±6.2

K1
A 84.9±2.6 86.7±1.6 75.5±2.3 63.1±5.9 71.1±4.1 72.9±4.6 87.3±5.5

15 pts. K2
A 87.5±2.7 85.0±3.8 74.1±6.3 67.3±4.3 74.3±4.1 77.4±6.3 76.9±10.5

K3
A 79.6±10.0 76.3±7.4 72.7±6.3 59.6±6.0 69.0±8.6 68.7±10.0 88.5±5.0

k-means++ cluster centroids). When all the available data is used as landmarks,
the L1 constraint on α forces the algorithm to choose the most valuable of them
by adapting their respective weights. All of the experimental results are aver-
aged over 10 runs, for which we compute a 95% confidence interval. We tune
the following parameters by cross-validation: γ ∈ {10−4, . . . , 10−1} for BBS and
JSL, λITML ∈ {10−4, . . . , 104}, γSLLC , βSLLC ∈ {10−7, . . . , 10−2}, λSLLC ∈
{10−3, . . . , 102}, while for LRML we consider γs, γd, γi ∈ {10−2, . . . , 102}. For
LMNN, we set µ = 0.5, as done in [16]. We solve BBS and JSL using projected
gradient descent. In JSL, we alternate the optimization between α and A.

4.2 Results

Choice of similarity We first study the influence of the similarity function
on the proposed framework. We plug into JSL the three similarities studied
previously (see Section 3.2) and present the results for classification in Table 2.
For both unlabeled configurations, 15 points or the whole training set, K2

A yields
the best results on 4 out of 7 datasets, while K3

A performs best in only one
case. We explain this by the topology of the involved datasets, which make
the Mahalanobis distance a better dicriminant for classification than the other
similarities. In the case of K3

A, there is a trade-off between the tightness of
the bound in Theorem 2 and the stability of the results. Large values of σ will
lead to tighter bounds (as l is smaller), but the resulting similarity function
becomes linear and less discriminative. As a consequence, the results vary more
for this similarity function, leading to larger confidence intervals, as can be seen
on almost all the collections. When comparing the two unlabeled settings, we
notice that there are only a few cases when the best accuracy is attained with
less unlabeled points for the same similarity, but that when this happens the
improvement is significant. This is due to the fact that the 15 unlabeled points
are not chosen randomly, but contain relevant information w.r.t. data topology.

Comparison of different methods Following the previous analysis, we
now propose to study the classification performance of our method. For this
purpose, we focus on JSL with K2

A using 15 unlabeled landmarks. We compare
our approach to state-of-the-art methods when a limited amount of labeled data
is used and present the results in Table 3. In order to ensure fairness, we fix
the similarity function in BBS to the Euclidean distance. On average over all
datasets, JSL obtains the best performance in all the settings. The only other



Table 3: Average accuracy (%) over all datasets with confidence interval at 95%.
Data LMNN-dg LMNN ITML SVM BBS SLLC LRML JSL

5 pts./cl. 65.1±5.5 69.4±5.9 75.8±4.2 76.4±4.9 77.2±7.3 70.5±7.2 74.7±6.2 78.4±2.3
10 pts./cl. 68.2±5.6 70.9±5.3 76.5±4.5 76.2±7.0 77.0±6.2 75.9±4.5 75.3±5.9 78.7±1.9
20 pts./cl. 71.5±5.2 73.2±5.2 76.3±4.8 77.7±6.4 77.3±6.3 75.8±4.8 75.8±5.2 78.3±1.6

(a) Ionosphere (b) Pima

Fig. 1: Average accuracy w.r.t. the number of labeled points with 15 landmarks.

methods with comparable results are BBS and SVM. We mention that JSL using
also K2

A and all the training set as unlabeled landmarks performs similarly to
the setting presented in Table 3. This result proves that we can learn well with
a small amount of both labeled and unlabeled data, when the unlabeled points
are informative (e.g., correspond to cluster centroids, as it is the case here).

Quantity of labeled data We now study the method’s behavior when
the level of supervision varies. For this we keep on using JSL with K2

A and
set the number of unlabeled points to 15. Figure 1 presents the accuracies on
two representative datasets, Ionosphere and Pima, with an increasing number of
labeled examples. JSL obtains the best performance in both cases when less than
50% of the labeled data is used, which is coherent with the results presented in
Table 3. For greater amounts of data, JSL performs similarly to the best state-of-
the-art methods: SVM and LMNN for Ionosphere, and SVM and BBS for Pima;
these results also correspond to those presented in the previous subsection.

5 Conclusion

In this paper, we extend the (ε, γ, τ)-good similarity theory to a method where
the metric and the separator are jointly learned in a semi-supervised way, set-
ting that has not been explored before. We show that our joint approach is the-
oretically founded using results from [1] and new results based on algorithmic
robustness. The approach we propose is particularly adapted to learning with
small amounts of both labeled and unlabeled data, when the unlabeled points
are informative. This is revealed in the experiments conducted which illustrate
the good behavior of our method in the above setting on various UCI datasets,



in comparison with different standard approaches (LMNN, ITML, SVM, BBS,
SLLC, LRML).
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