Multiview Clustering of Multilingual Documents
YoungMin Kim (2), Massih-Reza Amini(1), Cyril Goutte (1), Patrick Gallinari (2)
(1) National Research Council Canada
(2) Laboratoire d'Informatique Paris 6
123, boulevard Alexandre Taché
104, avenue du président
Kennedy
Gatineau, Canada
75016 Paris
We propose a new multi-view clustering method which uses clustering results obtained on each view as a voting pattern in order to construct a new set of multi-view clusters. Our experiments on a multilingual corpus of documents show that performance increases significantly over simple concatenation and another multi-view clustering technique.