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ABSTRACT
We investigate the problem of learning document classifiers
in a multilingual setting, from collections where labels are
only partially available. We address this problem in the
framework of multiview learning, where different languages
correspond to different views of the same document, com-
bined with semi-supervised learning in order to benefit from
unlabeled documents. We rely on two techniques, coregular-
ization and consensus-based self-training, that combine mul-
tiview and semi-supervised learning in different ways. Our
approach trains different monolingual classifiers on each of
the views, such that the classifiers’ decisions over a set of
unlabeled examples are in agreement as much as possible,
and iteratively labels new examples from another unlabeled
training set based on a consensus across language-specific
classifiers. We derive a boosting-based training algorithm
for this task, and analyze the impact of the number of views
on the semi-supervised learning results on a multilingual ex-
tension of the Reuters RCV1/RCV2 corpus using five dif-
ferent languages. Our experiments show that coregulariza-
tion and consensus-based self-training are complementary
and that their combination is especially effective in the in-
teresting and very common situation where there are few
views (languages) and few labeled documents available.
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1. INTRODUCTION
In this paper, we address the problem of semi-supervised

learning of document classifiers in a multilingual setting
where documents are available as a parallel corpus with two
or more languages for which labels are only partially avail-
able.

Our motivation is that multilingual collections are becom-
ing more and more common in national and supranational
contexts. However, the bulk of document classification and
organization techniques and research is developed in the
monolingual setting, most often for English. In addition, la-
beling text documents may require cost- and time-intensive
human annotation, hence the widespread interest for semi-
supervised text classification approaches that leverage unla-
beled documents to speed-up the learning process.

Our work addresses the two issues of limited annotation
and multilingual setting. Using the different languages as
different views on a document, we develop a multiview, semi-
supervised approach that learns from collection of multilin-
gual documents.

We formalize the problem as follows. Given a collection
of partially-labeled documents written in different languages
and belonging to a set of classes that is fixed across lan-
guages, we wish to learn a number of monolingual classifiers
for this common set of classes. Note that this problem is
different from cross-language text categorization [5], where
a document written in one language must be classified in a
category system learned in another language.

In our setting, we assume that each document is avail-
able in several languages and we are interested in learning
improved monolingual classifiers. We also emphasize that
we wish to develop inter-dependent monolingual classifiers,
rather than a single multilingual classifier, as we wish to be
able to classify an incoming document in whatever language
it is made available, without having to translate it before-
hand.

There have been at least two approaches to multiview
semi-supervised learning. One can use coregularization [19]
to improve the view-specific classifiers by constraining them
to agree on some unlabeled data, leveraging unlabeled data
in a multiview learning framework. A more recent proposal
[3], by contrast, leverages the multiple views in a semi-
supervised learning framework by using the consensus be-
tween the different views in a self-training framework. Our
solution is to combine those two components into a sin-
gle boosting-based algorithm. View-specific classifiers are
trained using coregularization, and a consensus-based self-



training process iteratively labels unlabeled examples on
which the view-specific classifiers agree.

Using a large publicly available corpus of multilingual doc-
uments extracted from the Reuters RCV1 and RCV2 cor-
pora, we show that our approach consistently improves over
both coregularization and self-training taken in isolation.
We also analyze the conditions in which the combination
is most profitable. It turns out that adding coregulariza-
tion to consensus-based self-training helps most when there
are few languages and few documents available. This is a
particularly interesting setting when resources are limited,
and corresponds in particular to the common situation of
bilingual data.

In the next section, we position our work with respect to
the state of the art. In Section 3, we then present the prob-
lem of multiview semi-supervised learning for multilingual
text classification. Section 4 describes the boosting-based
algorithm we developed to obtain the language-specific clas-
sifiers. In Section 5, we present experimental results ob-
tained with our approach on a subcollection of the Reuters
RCV1/RCV2 corpus. Finally, in Section 6 we discuss the
outcomes of this study and give some pointers to further
research.

2. RELATION TO STATE-OF-THE-ART
Document classification has been a very popular applica-

tion domain for Machine Learning algorithms, and in partic-
ular for multiview [7] and semi-supervised learning [16, 12].
The setting of multilingual document classification, however,
has been much less studied so far [1, 2].

Interestingly, the original work on co-training [7] intro-
duced both multiview and semi-supervised learning on a
document classification task. Since then, both fields have de-
veloped greatly but mostly independently. Semi-supervised
learning approaches include generative approaches, density-
based or graph-based approaches (cf. [9] for an overview).
Multiview learning techniques include multiple kernel learn-
ing [4] and techniques relying on kernel Canonical Correla-
tion Analysis [11].

Some recent work more in line with the original co-training
approach have introduced coregularization [19, 8], where
classifiers are learnt in each view using a multiview regu-
larizer that constrains predictions made in each view to be
as similar as possible.

When this multiview regularizer is computed on unlabeled
data, this provides a way to perform semi-supervised learn-
ing in a multiview setting. More recently, a semi-supervised
multiview approach has been developed [3] where classifiers
are learned on each view using standard single view train-
ing, but unlabeled examples are iteratively labeled in a self-
training manner using the consensus across the views. The
multiview consensus ensures higher confidence in the label-
ing, which yields improved semi-supervised learning rates.

Our work analyses and illustrates the combination of these
two techniques. We use a coregularization component sim-
ilar to [19, 8], with the key difference that instead of the
coregularized least squares, we penalize disagreement using
a Kullback-Leibler divergence which has a more natural in-
terpretation in the context of probabilistic classifier outputs.
In addition, it allows us to develop a novel boosting-based
algorithm for solving the coregularized multilingual classifi-
cation problem.

We combine this coregularized learning with a consensus-
based self-training framework similar to [3] where unlabeled
documents are iteratively labeled using the consensus pre-
diction across the multiple views.

As both coregularization and consensus-based self-training
use multiview information and unlabeled data for training,
the key question we address is to see whether the two tech-
niques can be complementary and improve on each other,
as opposed to being completely redundant. We also inves-
tigate in which conditions such a complementarity may be
exploited. We are particularly interested in the effects of
coregularization in the common situation where the number
of views is small (eg bilingual documents) and few labeled
data are available.

3. FRAMEWORK
We consider V input spaces Xv ⊂ Rdv ;∀v ∈ {1, .., V }, and

an output space Y. We take Y = {−1, +1} since we restrict
our presentation to binary classification. Each multiview
document x ∈ X1 × ...× XV is a sequence

x def
= (x1, ..., xV )

where each view xv provides a representation of the same
document in a different vector space Xv. In the seminal
work on co-training [7], web pages are represented by either
their textual content (first view) or anchor text pointing to
them (second view). In our setting of multilingual classifi-
cation, each view is the textual representation in a different
language. Although typically one of the views is the original
version of the document and the others are its translations,
we never rely on this information and treat all views equally.
Note that in this framework all views of each document are
present simultaneously, hence we deal with multilingual text
classification in a parallel corpus.

We further assume that we have a labeled training set
Z� = {(xi, yi)|i ∈ {1, .., l}} and a possibly much larger
set of unlabeled training data that we split into two parts
denoted respectively by X1

U = {xl+i|i ∈ {1, .., m1}} and
X2

U = {xl+m1+i|i ∈ {1, .., m2}}. Our goal is to obtain V
binary classifiers {hv : Xv → {−1, 1}|v ∈ {1, .., V }}, work-
ing each on one view, such that the predictive performance
as estimated for example from a test set is optimized. Note
that by construction, the label for a given document is the
same for all views.

4. MODEL
We iteratively learn each classifier hv , ∀v ∈ V, while keep-

ing fixed the classifiers for the other views, hu, u ∈ V∧u �= v,
by optimizing the loss

L(hv,Z�, X
1
U , λ) = C(hv,Z�) +

λ

V − 1

VX
u=1,u �=v

d(hv, hu, X1
U ),

(1)
where C(hv,Z�) is the (monolingual) cost of hv on the la-
beled training set Z�, d(hv, hu, X1

U ) measures the divergence
between the two classifiers hv and hu on the unlabelled doc-
uments in X1

U , and λ is a discount factor which modulates
the influence of the disagreement cost on the optimization.



For the monolingual cost, we consider the standard mis-
classification error:

C(hv,Z�) =
1

l

lX
i=1

[[yihv(xv
i ) ≤ 0]],

where [[π]] is equal to 1 if the predicate π is true, and 0 other-
wise. As this cost is non-continuous and non-differentiable,
it is typically replaced by an appropriate convex and dif-
ferentiable proxy. Following standard practice in Machine
Learning algorithms, we replace [[z ≤ 0]] by the upper bound
a log(1+e−z), with a = (log 2)−1. The monolingual misclas-
sification cost becomes:

C(hv,Z�) =
1

l

lX
i=1

a log(1 + exp(−yihv(xv
i ))),

Assuming that each classifier output may be turned into
a posterior class probability, we measure the disagreement
between the output distributions for each view using the
Kullback-Leibler (KL) divergence. Using the sigmoid func-
tion σ(z) = (1 + e−z)−1 to map the real-valued outputs of
the functions hv and hu into a probability, and assuming
that the reference distribution is the output of the classifier
learned on the other views, hu, u ∈ {1, ..., V } ∧ u �= v, the
disagreement d(hv, hu, X1

U ) becomes

d(hv, hu, X1
U ) =

1

m1

m1X
i=1

kl(σ(hu(xu
l+i))||σ(hv(xv

l+i))),

where for two binary probabilities p and q, the KL diver-
gence is defined as:

kl(p||q) = p log

„
p

q

«
+ (1− p) log

„
1− p

1− q

«

There are two reasons for choosing the KL divergence:
first, it is the natural equivalent in the classification con-
text of the l2 norm used for regression in previous work on
coregularization [19, 8, 18]; second, it allows the derivation
of a boosting approach for minimizing the local objective
function (1), as described in the following section.

4.1 A view-specific boosting-like algorithm
In order to learn the classifier hv for view v, we need to

minimize

L(hv,Z�, X
1
U , λ) =

1

l

lX
i=1

a log(1 + exp(−yihv(xv
i )))

+
λ

(V − 1)m1

m1X
i=1

VX
u=1,u �=v

kl(σ(hu(xu
l+i))||σ(hv(xv

l+i))) (2)

We show how the loss-minimization of (2) is equivalent to
the minimization of a Bregman distance. This equivalence
will allow us to employ the boosting-like parallel-update op-
timization algorithm proposed by [10] to learn a linear clas-
sifier hv : xv 	→ 〈βv , xv〉 minimizing (2).

A Bregman distance BF of a convex, continuously differ-
entiable function F : Ω→ R on a set of closed convex set Ω
is defined as

∀p, q ∈ Ω, BF (p||q) def
= F (p)− F (q)− 〈∇F (q), (p− q)〉 .

One optimization problem arising from a Bregman dis-
tance is to find a vector p∗ ∈ Ω, closest to a given vector

q0 ∈ Ω with respect to BF , under the set of linear constraints
{p ∈ Ω|ptMv = p̃tMv}, where p̃ ∈ Ω is a specified vector and
Mv is a n× d matrix, with n the number of examples in the
training set and d the dimension of the problem.1

Defining the Legendre transform as

Lf (q, Mvβv) def
= argmin

p∈Ω
(BF (p||q) + 〈Mvβv , p〉),

the dual optimization problem can be stated as finding a
vector q in the closure Q̄ of the set Q = {LF (q, Mvβv)|β ∈
Rp}, for which BF (p̃||q) is the lowest, under the set of linear
constraints {q ∈ Ω|qtMv = p̃tMv}.

It has been shown that both of these optimization prob-
lems have the same unique solution [14]. Moreover, [10] have
proposed a single parallel-update optimization algorithm to
find this solution in the dual form.

They have further shown that their algorithm is a general
procedure for solving problems which aim to minimize the
exponential loss, like in Adaboost, or a log-likelihood loss,
like in logistic regression. Indeed, they showed the equiv-
alence of these two loss minimization problems in terms of
Bregman distance optimization.

In order to apply the boosting algorithm proposed by [10],
we have to define a continuously differentiable function F
such that by properly setting Ω, p̃, q0 and Mv, the Bregman
distance BF (0||LF (q0, Mvβv)) is equal to Eq. (2). Following
[10], we choose:

∀p ∈ Ω = [0, 1]n, F (p) =

nX
i=1

αv
i (pi log pi + (1−pi) log(1−pi)) ,

where αv
i are non-negative real-valued weights associated to

examples xv
i .

This definition yields that ∀p, q ∈ Ω× Ω:

BF (p||q) =
nX

i=1

αv
i

„
pi log

„
pi

qi

«
+ (1−pi) log

„
1−pi

1−qi

««
(3)

and, ∀i, LF (q, z)i =
qie

− zi
αv

i

1− qi + qie
− zi

αv
i

(4)

Using Equations (3) and (4), and setting q0 = 1
2
1, the

vector with all components set to 1
2
, and Mv the matrix

such that ∀i, j, (Mv)ij = αv
i yix

v
ij ,

2 the Bregman distance in
Equation (3) writes:

BF (0||LF (q0, Mvβv)) =
nX

i=1

αv
i log(1 + e−yi〈βv,xv

i 〉). (5)

1We have deliberately set the number of examples to n as
in our equivalent rewriting of the minimization problem the
latter is not exactly m1.
2All vectors ∀i ∈ {1, .., n}, αiyix

v
i should be normalized in

order to respect the constraint Mv ∈ [−1, 1]n×d.



Algorithm 1: Parallel-update optimization algorithm

Input : Matrix ∀v, Mv ∈ [−1, 1]n×d .
Initialize: Let ∀v, βv ← 0
for v = 1, ..., V do

for t = 1, 2, ... do

Let q(t) be the solution of LF (q0, Mvβ
(t)
v );

for j = 1, ..., d do

W
(t)+

v,j ←P
i:sign((Mv)ij)=+1 q

(t)
i |(Mv)ij |;

W
(t)−
v,j ←P

i:sign((Mv)ij)=−1 q
(t)
i |(Mv)ij |;

δ
(t)
v,j ← 1

2
log

 
W

(t)+

v,j

W
(t)−
v,j

!
;

end

β
(t+1)
v ← β

(t)
v + δ

(t)
v ;

end

end

Output : ∀v, the sequence β
(1)
v , β

(2)
v , ... verifying

lim
t→∞

BF (0||LF (q0, Mvβ(t)
v )) = inf

βv∈Rd
BF (0||LF (q0, Mvβv))

By developing Eq. (2), we get:

L(hv,Z�, X
1
U , λ) = K +

1

l

lX
i=1

a log(1 + exp(−yihv(xv
i ))) +

λ

(V − 1)m1

m1X
i=1

VX
u=1,u �=v

σ(hu(xu
l+i)) log(1 + e−hv(xv

l+i)) +

λ

(V − 1)m1

m1X
i=1

VX
u=1,u �=v

(1− σ(hu(xu
l+i))) log(1 + ehv(xv

l+i)) (6)

where K is a constant which does not depend on hv.
In order to make Eq. (6) identical to Eq. (5) (up to a

constant), we create, for each unlabeled document xv
i ∈ X1

U ,
two examples (xv

i , +1) and (xv
i ,−1) (which makes n = l +

2m1), and set the weights as follows:

αv
i =

8>><
>>:

a

l
if xi∈Z�,

λ

(V − 1)m1

VX
u=1,u �=v

[[yi = −1]]+ yiσ(hu(xu
i )) else.

(7)
As a consequence, minimizing Eq. (2) is equivalent to

minimizing BF (0||q) over q ∈ Q̄, where

Q = {q ∈ [0, 1]l+2m1 | qi = σ(yi 〈βv , xv
i 〉), βv ∈ R

dv}.
This equivalence allows us to adapt the parallel-update

optimization algorithm described in [10] to learn each specific-
view classifier, as described in Algorithm 1.

4.2 Coregularized semi-supervised algorithm
We embed the boosting-based coregularized classifier learn-

ing inside a self-training framework (cf. [22], Section 3)
which relies on consensus across views in order to automati-
cally label documents from an unlabeled document pool X2

U .
Each monolingual classifier hv , v ∈ V is first initialized on

the supervised monolingual cost alone, then we iteratively

Algorithm 2: Coregularized semi-supervised Learning

Input : A set of labeled training examples Z�;
Two sets of unlabeled training data X1

U and X2
U ;

Initialize: Set ZU\ ← ∅;
∀v, h

(0)
v

def
= argminh C(h,Z�);

repeat
t← 1;
repeat

for v = 1, .., V do

Learn h
(t)
v = argminh L(h,Z� ∪ ZU\, X1

U , λ);
end
t← t + 1;

until Convergence of Δ(⊗V
v=1h

(t)
v ,Z� ∪ ZU\, λ) ;

− Let XU\ be the set of unlabeled examples in X2
U

on which all classifiers agree over the class label of
examples ;
−X2

U ← X2
U�XU\ ;

−ZU\ ← ZU\ ∪XU\ ;

until X2
U = ∅ or XU\ = ∅ ;

Output : Classifiers hv,∀v ∈ {1, ..., V }

optimize each of the hv classifiers while keeping the classi-
fiers for the other views fixed, until the global objective

Δ(⊗V
v=1hv,Z� ∪ ZU\, λ) =

VX
v=1

L(hv,Z� ∪ ZU\, X
1
U , λ) (8)

has reached a (possibly local) minimum.
This alternating optimization of partial cost functions bears

similarity with the block-coordinate descent technique [6].
At each iteration, block coordinate descent splits variables
into different subsets, the set of the active variables and the
sets of inactive ones, then minimizes the objective function
along active dimensions while inactive variables are fixed at
current values.

Once all language-specific classifiers have been trained we
assign class labels to unlabeled examples in X2

U for which all
mono-lingual classifiers predict the same class label. These
newly labeled examples are added to the labeled training
set. We then go back to the boosting-based coregularized
classifier training using the combined labeled data, and so on
until either no remaining unlabeled example can be labeled
by consensus, or all unlabeled examples have been labeled.
As shown by [3], focusing on functions which agree across
several views reduces the complexity of the function class
and therefore improves the prediction ability of the resulting
model.

Algorithm 2 summarizes this coregularized self-training
strategy.

5. EXPERIMENTS
We conducted a number of experiments aimed at evaluat-

ing how the combination of coregularization and consensus-
based self-training can help to take advantage of multilingual
unlabeled documents in order to learn efficient classification
functions.

5.1 Data set
We perform experiments on a publicly available multi-

lingual multiview text categorization corpus extracted from



Language # docs Class # docs
English 18,758 C15 18,816
French 26,648 CCAT 21,426
German 29,953 E21 13,701
Italian 24,039 ECAT 19,198
Spanish 12,342 GCAT 19,178
Total 111,740 M11 19,421

Table 1: Number of documents per language (left)
and per class (right) in Reuters RCV1/RCV2 sub-
collection used in our experiments.

the Reuters RCV1/RCV2 corpus [3].3 This corpus con-
tains more than 110K documents from 5 different languages,
(English, German, French, Italian, Spanish), distributed
over 6 classes (Table 1). Documents that originally had more
than one of these 6 labels were assigned to the smallest class.
We reserved a test split containing 25% of the documents,
respecting class and language proportions. Within the train-
ing set containing the remaining 75% of documents, we ran-
domly sampled labeled documents (Z�), and split the re-
maining unlabeled data into two subsets: one for evaluating
the coregularization term (X1

U ), and one for the self-training
process (X2

U ). The motivation for that split is to avoid bias:
as coregularization enforces agreement between classifiers, it
may yield artificially high consensus for the examples used
in the coregularization term.

This corpus of multilingual documents is originally a com-
parable corpus as it covers the same subset of topics in all
languages. In order to produce multiple views for each doc-
uments, each original document extracted from the Reuters
corpus was translated in all other languages using a phrase-
based statistical machine translation system [20]. The in-
dexed translations are part of the corpus distribution.

More precisely, each document is indexed by the text ap-
pearing in its title (headline tag) and body (body tag). As
preprocessing, all text is lowercased, digits are mapped to a
single digit token, and tokens containing non-alphanumeric
characters are removed. For each language, words in a sto-
plist as well as tokens occurring in less than 5 documents
were also filtered out. Documents were then represented as
a bag of words, using a TFIDF weighting scheme based on
BM25 [17].

Results are evaluated over the test set using the accu-
racy and the standard F1 measure [21], which is the har-
monic average of precision and recall. The reported perfor-
mance is averaged over the resulting five language-specific
classifiers. In addition, we also averaged over 10 random
(train/unlabeled/test) sets of the initial collection.

5.2 Experimental setup
To validate the coregularized consensus-based self-training

approach described in the previous section, we test the fol-
lowing six classification methods. The first method is a
purely supervised technique which does not make use of
any unlabeled examples in the training stage. The follow-
ing methods make use of the multiview and semi-supervised
learning approaches in different ways, using coregulariza-
tion and/or consensus-based self-training separately or in

3http://multilingreuters.iit.nrc.ca/

combination, over different subsets of the unlabeled training
documents.

- Baseline method [Boost]: This baseline corresponds
to a supervised monolingual boosting model optimiz-
ing Eq. 2 for λ = 0.

- Coregularized boosting [reg-Boost]: Boosting us-
ing coregularization on X1

U , optimizing Eq. 2 for λ �= 0.
This constrains the supervised monolingual boosting
models to achieve high agreement among their predic-
tions on X1

U .

- Boosting with self-training [Boost-cst]: Boost-
ing using consensus-based self-training, but no coreg-
ularization. This is similar in spirit to the iterative
co-training algorithm [7]. Given the language-specific
classifiers trained on an initial set of labeled examples,
we iteratively assign pseudo-labels to the unlabeled ex-
amples in X2

U for which all classifier predictions agree.

- SVM with self-training [SVM-cst]: This is simi-
lar to the previous method except that we use the
SVM-Perf package [13] to learn each language-specific
classifiers instead of boosting. For tuning the hyper-
parameter C, we first tried the leave-one-out cross-
validation strategy. However, with small training sets
we found out that the default ( 1

l

Pl
i=1 ||xi||)−1 gave

similar, and in some cases, better results. We there-
fore used that default C in all of our experiments.

- Coregularization+self-training [reg-Boost-cst]:
Coregularized boosting using the consensus-based self-
training: The coregularization term is computed over
X1

U and self-training iteratively labels documents from
X2

U .

- Boosting with full self-training [Boost-cst∗]: In
order to determine when the combination of coregu-
larization and self-training is the most useful, we also
trained algorithm Boost-cst using all the unlabeled
training examples XU = X1

U ∪ X2
U rather than just

those in X2
U .

Our aim is to show the gradual effect of each of the multi-
view and semi-supervised learning approaches on the boost-
ing algorithm, progressing from Boost to reg-Boost and
Boost-cst, to reg-Boost-cst. Note that the reg-Boost

and Boost-cst algorithms use the two separate unlabeled
training subsets in different manners. SVM-cst is the same
as Boost-cst using a SVM algorithm instead of Boosting.
This will allow us to benchmark the boosting-based algo-
rithm against the state of the art SVM model in a similar
framework. Note that adding co-regularization in a SVM im-
plementation requires some significant changes to the un-
derlying code, which is why we do not provide reg-SVM vari-
ants. Finally, using all the unlabeled training examples in
Boost-cst∗ and comparing the results to reg-Boost-cst

will allow us to uncover the situations in which it is ben-
eficial to combine coregularization and self-training rather
than use the latter alone on the combined unlabeled data.
This gives an idea of the true benefit brought by coregular-
ization.



Table 2: Test classification accuracy and F1 of different learning algorithms on the six classes, averaged over
10 random sets of 50 labeled examples per training set. For each class, the best result is in bold, and a ↓
indicates a result that is statistically significantly worse than the best, according to a Wilcoxon rank sum test
with p < .01.

Strategy
C15 CCAT E21 ECAT GCAT M11

Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1

Boost 0.771↓ 0.506↓ 0.662↓ 0.398↓ 0.765↓ 0.323↓ 0.505↓ 0.347↓ 0.781↓ 0.587↓ 0.793↓ 0.586↓

reg-Boost 0.793↓ 0.532↓ 0.689↓ 0.419↓ 0.783↓ 0.342↓ 0.513↓ 0.372↓ 0.803↓ 0.608↓ 0.815↓ 0.611↓

Boost-cst 0.804↓ 0.572↓ 0.708↓ 0.421↓ 0.794↓ 0.365↓ 0.511↓ 0.384↓ 0.866↓ 0.655↓ 0.848↓ 0.668↓

SVM-cst 0.815 0.583 0.720↓ 0.438 0.800↓ 0.378↓ 0.522↓ 0.395↓ 0.873↓ 0.662↓ 0.861↓ 0.676↓

reg-Boost-cst 0.823 0.595 0.748 0.449 0.815 0.394 0.542 0.408 0.895 0.687 0.883 0.693

5.3 Experimental Results
We start our evaluation by analyzing the gains provided

by coregularization, the consensus-based self-training and
the combination of both, over the baseline boosting algo-
rithm. We measure the classification accuracy and F1 for a
fixed number of labeled and unlabeled examples in the train-
ing set. In order to study the role of unlabeled data on the
learning behavior we begin our experiments with very few
labeled training examples. The size of the labeled training
sets in these first experiments is fixed to 50 (an average of
10 per language), with an equal sampling of 25 positive and
25 negative examples in Z�. For coregularization, results
are reported for the best discount factor λ = 1, although as
illustrated in Section 5.3.1, results are fairly stable across a
wide range of values. We will later investigate the impact
on the test performance of the number of labeled examples
and the number of views (cf Sections 5.3.3 and 5.3.2).

Table 2 summarizes results obtained by Boost, reg-Boost,
Boost-cst, SVM-cst and reg-Boost-cst averaged over five
languages and 10 random splits of tests sets for our six main
categories. We use bold face to indicate the highest perfor-
mance rates, and the symbol ↓ indicates that performance
is significantly worse than the best result, according to a
Wilcoxon rank sum test used at a p-value threshold of 0.01
[15]. From these results it becomes clear that:

1. Using the first part of the unlabeled training examples
(X1

U ) to coregularize the boosting algorithm, algorithm
reg-Boost always improves over Boost by an average
of 2-3 points in F1.

2. The consensus-based self-training framework implemen-
ted in Boost-cst and SVM-cst also improves over the
baseline. In addition, it always seems to outperform
coregularization (reg-Boost) alone. In this self-training
framework, the SVM classifiers SVM-cst tend to outper-
form the boosting-based classifiers Boost-cst.

3. Finally, the combination of coregularization and self-
training (reg-Boost-cst) produces a further improve-
ment of around 1-2 points in F1 over the best semi-
supervised result (SVM-cst). The improvement is sta-
tistically significant in four classes out of six.

Our analysis of these results is that both coregulariza-
tion and the consensus-based self-training provide consistent
improvements over training independent monolingual clas-
sifiers. Both are instances of multiview learning, and both

rely in some way on the consensus between classifiers trained
on the different views. The question therefore arises as to
how redundant these two techniques are? Our experimental
results suggest that these techniques are in fact complemen-
tary.

The gains provided by adding coregularization to the self-
training boosting-based model is in fact similar to the gain
provided by coregularization in the supervised setting, which
suggest that the two effects are essentially independent and
additive. In order to analyze more finely the situations in
which the combination of coregularization and consensus-
based self-training is more advantageous, we compared all
the algorithms, including Boost-cst∗, for different numbers
of languages and different amounts of labeled documents.
These results are reported in Section 5.3.2 and 5.3.3, right
after we address the issue of the discount factor λ.

5.3.1 The effect of the coregularization factor λ

We analyze the influence of the discount factor λ on the
performance of reg-Boost-cst for varying amounts of la-
beled training data.4 The results obtained on class E21 are
presented in Figure 1. Note that λ controls the relative im-
portance of the unlabeled data in the coregularization (with
λ = 0 corresponding to no regularization). Figure 1 shows
that unlabeled examples become relatively less important
as more labeled data is available: as the amount of labeled
training data increases from 50 to 300, the optimal discount
factor λ moves away from 1.

We recall that for λ = 1, unlabeled data plays the same
role in the training procedure as labeled data.

Note also that in all cases, the performance of the resulting
classifiers seems relatively stable for a wide range of values
of λ. This suggests that the results are not overly sensitive
to a precise choice of discount factor λ.

5.3.2 The value of labeled data
We also analyze the behavior of the various algorithms

for growing initial amounts of labeled data in the training
set. Figure 2, illustrates this by showing the F1 measures
on classes CCAT and ECAT with respect to the number of la-
beled documents in the initial labeled training set Z�. For
all labeled data sizes, the proportion of negative/positive ex-
amples is maintained at 50%. As expected, all performance
curves increase monotonically with respect to the additional

4We always maintain the proportion of positive/negative
documents in the labeled training set to 50%/50%.
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Figure 2: F1 on classes CCAT and ECAT with respect to the number of labeled documents in the initial labeled
training set Z�.

labeled data. When there are sufficient labeled examples,
all algorithms actually converge to the same F1 value, sug-
gesting that the labeled data carries sufficient information
and that no additional information could be extracted from
unlabeled examples. For a low number of labeled training
data, the contribution of each of the algorithms that use
unlabeled data is clearly shown. Note that these curves are
obtained using five languages, such that the highest perfor-
mance is achieved by Boost-cst∗, which is consistent with
the findings of the previous section. When fewer views are
available, the relative positions of the top algorithms are dif-
ferent, but the effect is similar in that the gains are more
important when fewer initial labeled documents are avail-
able.

5.3.3 The effect of the number of languages
In our experiments, the unlabeled training set was split in

two parts, one for coregularization and one for self-training.
Our motivation was to examine the effect of each of the
techniques individually without introducing any bias by per-
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Figure 1: F1 with respect to the coregularization
factor λ for different labeled training sizes on class
E21.

forming coregularization and self-training on the same un-
labeled data. The previous results suggest that the per-
formance gain is higher when unlabeled examples are it-
eratively labeled in the self-training framework than when
they are used in coregularization to enforce agreement be-
tween the language-specific classifiers. The question there-
fore arises as to what the performance would be if all the un-
labeled examples were used in consensus-based self-training
rather than being split between coregularization and self-
training? In addition, the consensus is expected to be more
reliable when there are many views than when there are few,
in which case the language-specific classifiers could agree
by chance but erroneously. We therefore investigate the
effect of the number of views on the performance of the
reg-Boost-cst and Boost-cst∗ algorithms. Figure 3 de-
picts these results by comparing both algorithms for varying
numbers of languages on two classes, E21 and C15. All re-
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sults obtained for less than five languages are averaged over
all possible such combinations of languages.

These results show that for five languages, using all the
unlabeled data for self-training is slightly more efficient than
reserving part of it for coregularization. However, when the
number of views is smaller, the combination of both coregu-
larization and consensus-based self-training is more advan-
tageous. Note that this is a common situations, for example
when only bilingual documents are available.

This result suggests that in the situation where we have
few views, reducing the disagreement between language spe-
cific classifiers through coregularization may lead to a more
effective use of consensus-based labeling, decreasing the num-
ber of noisy examples added to the training set during self-
training. On the other hand, when the number of views is
large, the consensus is usually reliable enough without the
need for coregularization.

6. CONCLUSION
In this paper we proposed a multiview semi-supervised

boosting algorithm for multilingual document classification.
We have shown how to embed a disagreement-based coregu-
larization term into a classification objective function using
a Bregman distance. This embedding allowed us to adapt an
existing boosting algorithm to learn language-specific clas-
sifiers while enforcing consistency in prediction across lan-
guages. We then proposed a self-training algorithm which
assigns class labels to unlabeled data based on the consensus
of the classifier predictions across the different views.

Our results show clearly that the consensus based self-
training allows to reach high performance in the situation
where few initial labeled training documents are available.
We also showed that when there are fewer languages, com-
bining coregularization with the consensus-based self-training
approach provides a better leverage of the unlabeled data by
improving the quality of the consensus.
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