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ABSTRACT
In many of the large-scale physical and social complex sys-
tems phenomena fat-tailed distributions occur, for which dif-
ferent generating mechanisms have been proposed. In this
paper, we study models of generating power law distribu-
tions in the evolution of large-scale taxonomies such as Open
Directory Project, which consist of websites assigned to one
of tens of thousands of categories. The categories in such
taxonomies are arranged in tree or DAG structured con-
figurations having parent-child relations among them. We
first quantitatively analyse the formation process of such
taxonomies, which leads to power law distribution as the
stationary distributions. In the context of designing classi-
fiers for large-scale taxonomies, which automatically assign
unseen documents to leaf-level categories, we highlight how
the fat-tailed nature of these distributions can be leveraged
to analytically study the space complexity of such classi-
fiers. Empirical evaluation of the space complexity on pub-
licly available datasets demonstrates the applicability of our
approach.

1. INTRODUCTION
With the tremendous growth of data on the web from var-
ious sources such as social networks, online business ser-
vices and news networks, structuring the data into concep-
tual taxonomies leads to better scalability, interpretability
and visualization. Yahoo! directory, the open directory
project (ODP) and Wikipedia are prominent examples of
such web-scale taxonomies. The Medical Subject Heading
hierarchy of the National Library of Medicine is another
instance of a large-scale taxonomy in the domain of life
sciences. These taxonomies consist of classes arranged in
a hierarchical structure with parent-child relations among
them and can be in the form of a rooted tree or a directed
acyclic graph. ODP for instance, which is in the form of a
rooted tree, lists over 5 million websites distributed among
close to 1 million categories and is maintained by close to
100,000 human editors. Wikipedia, on the other hand, rep-
resents a more complicated directed graph taxonomy struc-
ture consisting of over a million categories. In this context,
large-scale hierarchical classification deals with the task of
automatically assigning labels to unseen documents from a
set of target classes which are represented by the leaf level
nodes in the hierarchy.
In this work, we study the distribution of data and the hi-

erarchy tree in large-scale taxonomies with the goal of mod-
elling the process of their evolution. This is undertaken
by a quantitative study of the evolution of large-scale tax-
onomy using models of preferential attachment, based on
the famous model proposed by Yule [33] and showing that
throughout the growth process, the taxonomy exhibits a fat-
tailed distribution. We apply this reasoning to both cate-
gory sizes and tree connectivity in a simple joint model.
Formally, a random variable X is defined to follow a power
law distribution if for some positive constant a, the comple-
mentary cumulative distribution is given as follows:

P (X > x) ∝ x−a

Power law distributions, or more generally fat-tailed dis-
tributions that decay slower than Gaussians, are found in a
wide variety of physical and social complex systems, ranging
from city population, distribution of wealth to citations of
scientific articles [23]. It is also found in network connectiv-
ity, where the internet and Wikipedia are prominent exam-
ples [27; 7]. Our analysis in the context of large-scale web-
taxonomies leads to a better understanding of such large-
scale data, and also leveraged in order to present a concrete
analysis of space complexity for hierarchical classification
schemes. Due to the ever increasing scale of training data
size in terms of the number of documents, feature set size
and number of target classes, the space complexity of the
trained classifiers plays a crucial role in the applicability of
classification systems in many applications of practical im-
portance.
The space complexity analysis presented in this paper pro-
vides an analytical comparison of the trained model for hi-
erarchical and flat classification, which can be used to select
the appropriate model a-priori for the classification prob-
lem at hand, without actually having to train any mod-
els. Exploiting the power law nature of taxonomies to study
the training time complexity for hierarchical Support Vec-
tor Machines has been performed in [32; 19]. The authors
therein justify the power law assumption only empirically,
unlike our analysis in Section 3 wherein we describe the
generative process of large-scale web taxonomies more con-
cretely, in the context of similar processes studied in other
models. Despite the important insights of [32; 19], space
complexity has not been treated formally so far.
The remainder of this paper is as follows. Related work on
reporting power law distributions and on large scale hierar-
chical classification is presented in Section 2. In Section 3,
we recall important growth models and quantitatively jus-
tify the formation of power laws as they are found in hi-
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erarchical large-scale web taxonomies by studying the evo-
lution dynamics that generate them. More specifically, we
present a process that jointly models the growth in the size
of categories, as well as the growth of the hierarchical tree
structure. We derive from this growth model why the class
size distribution at a given level of the hierarchy also ex-
hibits power law decay. Building on this, we then appeal
to Heaps’ law in Section 4, to explain the distribution of
features among categories which is then exploited in Sec-
tion 5 for analysing the space complexity for hierarchical
classification schemes. The analysis is empirically validated
on publicly available DMOZ datasets from the Large Scale
Hierarchical Text Classification Challenge (LSHTC)1 and
patent data (IPC) 2 from World Intellectual Property Or-
ganization. Finally, Section 6 concludes this work.

2. RELATED WORK
Power law distributions are reported in a wide variety of
physical and social complex systems [22], such as in inter-
net topologies. For instance [11; 7] showed that internet
topologies exhibit power laws with respect to the in-degree
of the nodes. Also the size distribution of website cate-
gories, measured in terms of number of websites, exhibits a
fat-tailed distribution, as empirically demonstrated in [32;
19] for the Open Directory Project (ODP). Various mod-
els have been proposed for the generation power law distri-
butions, a phenomenon that may be seen as fundamental
in complex systems as the normal distribution in statistics
[25]. However, in contrast to the straight-forward derivation
of normal distribution via the central limit theorem, models
explaining power law formation all rely on an approxima-
tion. Some explanations are based on multiplicative noise
or on the renormalization group formalism [28; 30; 16]. For
the growth process of large-scale taxonomies, models based
on preferential attachment are most appropriate, which are
used in this paper. These models are based on the seminal
model by Yule [33], originally formulated for the taxonomy
of biological species, detailed in section 3. It applies to sys-
tems where elements of the system are grouped into classes,
and the system grows both in the number of classes, and
in the total number of elements (which are here documents
or websites). In its original form, Yule’s model serves as
explanation for power law formation in any taxonomy, irre-
spective of an eventual hierarchy among categories. Similar
dynamics have been applied to explain scaling in the connec-
tivity of a network, which grows in terms of nodes and edges
via preferential attachment [2]. Recent further generaliza-
tions apply the same growth process to trees [17; 14; 29].
In this paper, describe the approximate power-law in the
child-to-parent category relations by the model by Klemm
et al. [17]. Furthermore, we combine this formation process
in a simple manner with the original Yule model in order to
explain also a power law in category sizes, i.e. we provide
a comprehensive explanation for the formation process of
large-scale web taxonomies such as DMOZ. From the sec-
ond, we infer a third scaling distribution for the number of
features per category. This is done via the empirical Heaps’s
law [10], which describes the scaling relationship between
text length and the size of its vocabulary.
Some of the earlier works on exploiting hierarchy among tar-

1http://lshtc.iit.demokritos.gr/
2http://web2.wipo.int/ipcpub/

get classes for the purpose of text classification have been
studied in [18; 6] and [8] wherein the number of target classes
were limited to a few hundreds. However, the work by [19]
is among the pioneering studies in hierarchical classification
towards addressing web-scale directories such as Yahoo! di-
rectory consisting of over 100,000 target classes. The au-
thors analyse the performance with respect to accuracy and
training time complexity for flat and hierarchical classifica-
tion. More recently, other techniques for large-scale hierar-
chical text classification have been proposed. Prevention of
error propagation by applying Refined Experts trained on a
validation set was proposed in [4]. In this approach, bottom-
up information propagation is performed by utilizing the
output of the lower level classifiers in order to improve clas-
sification at top level. The deep classification method pro-
posed in [31] first applies hierarchy pruning to identify a
much smaller subset of target classes. Prediction of a test
instance is then performed by re-training Naive Bayes clas-
sifier on the subset of target classes identified from the first
step. More recently, Bayesian modelling of large-scale hier-
archical classification has been proposed in [15] in which hi-
erarchical dependencies between the parent-child nodes are
modelled by centring the prior of the child node at the pa-
rameter values of its parent.
In addition to prediction accuracy, other metrics of perfor-
mance such as prediction and training speed as well as space
complexity of the model have become increasingly impor-
tant. This is especially true in the context of challenges
posed by problems in the space of Big Data, wherein an opti-
mal trade-off among such metrics is desired. The significance
of prediction speed in such scenarios has been highlighted in
recent studies such as [3; 13; 24; 5]. The prediction speed is
directly related to space complexity of the trained model, as
it may not be possible to load a large trained model in the
main memory due to sheer size. Despite its direct impact
on prediction speed, no earlier work has focused on space
complexity of hierarchical classifiers.
Additionally, while the existence of power law distributions
has been used for analysis purposes in [32; 19] no thorough
justification is given on the existence of such phenomenon.
Our analysis in Section 3, attempts to address this issue in
a quantitative manner. Finally, power law semantics have
been used for model selection and evaluation of large-scale
hierarchical classification systems [1]. Unlike problems stud-
ied in classical machine learning sense which deal with a
limited number of target classes, this application forms a
blue-print on extracting hidden information in big data.

3. POWER LAW IN LARGE-SCALE WEB
TAXONOMIES

We begin by introducing the complementary cumulative size
distribution for category sizes. Let Ni denote the size of cat-
egory i (in terms of number of documents), then the proba-
bility that Ni > N is given by

P (Ni > N) ∝ N−β (1)

where β > 0 denotes the exponent of the power law dis-
tribution.3 Empirically, it can be assessed by plotting the
rank of a category’s size against its size (see Figure 1) The
derivative of this distribution, the category size probability
3To avoid confusion, we denote the power law exponents for
in-degree distribution and feature size distribution γ and δ.
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density p(Ni), then also follows a power law with exponent

(β + 1), i.e. p(Ni) ∝ N−(β+1)
i .

Two of our empirical findings are a power law for both the
complementary cumulative category size distribution and
the counter-cumulative in-degree distribution, shown in Fig-
ures 1 and 2, for LSHTC2-DMOZ dataset which is a subset
of ODP. The dataset4 contains 394, 000 websites and 27, 785
categories. The number of categories at each level of the hi-
erarchy is shown in Figure 3.
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Figure 1: Category size vs rank distribution for the
LSHTC2-DMOZ dataset.
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Figure 2: Indegree vs rank distribution for the LSHTC2-
DMOZ dataset.

We explain the formation of these two laws via models by
Yule [33] and a related model by Klemm [17], detailed in
sections 3.1 and 3.2, which are then related in section 3.3.

3.1 Yule’s model
Yule’s model describes a system that grows in two quantities,
in elements and in classes in which the elements are assigned.
It assumes that for a system having κ classes, the probability
that a new element will be assigned to a certain class is
proportional to its current size,

p(i) =
Ni∑κ

i′=1 Ni′
(2)

4http://lshtc.iit.demokritos.gr/LSHTC2 datasets
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Figure 3: Number of categories at each level in the hierarchy
of the LSHTC2-DMOZ database.

It further assumes that for every m elements that are added
to the pre-existing classes in the system, a new class of size
1 is created5.
The described system is constantly growing in terms of el-
ements and classes, so strictly speaking, a stationary state
does not exist [20]. However, a stationary distribution, the
so-called Yule distribution, has been derived using the ap-
proach of the master equation with similar approximations
by [26; 23; 17]. Here, we follow Newman [23], who con-
siders as one time-step the duration between creation of two
consecutive classes. From this follows that the average num-
ber of elements per class is always m + 1, and the system
contains κ(m + 1) elements at a moment where the num-
ber of classes is κ. Let pN,κ denote the fraction of classes
having N elements when the total number of classes is κ.
Between two successive time instances, the probability for a
given pre-existing class i of size Ni to gain a new element is
mNi/(κ(m + 1)). Since there are κ pN,κ classes of size N ,
the expected number such classes which gain a new element
(and grow to size (N + 1)) is given by :

mN
κ(m+ 1)

κ pN,κ =
m

(m+ 1)
N pN,κ (3)

The number of classes with N websites are thus fewer by the
above quantity, but some which had (N−1) websites prior to
the addition of a new class have now one more website. This
step depicting the change of the state of the system from κ
classes to (κ + 1) classes is shown in Figure 4. Therefore,
the expected number of classes with N documents when the
number of classes is (κ+1) is given by the following equation:

(κ+ 1)pN,(κ+1) = κ pN,κ +
m

m+ 1
[(N − 1)(p(N−1),κ)

−NpN,κ]
(4)

The first term in the right hand side of Equation 4 corre-
sponds to classes with N documents when the number of
classes is κ. The second term corresponds to the contribu-
tion from classes of size (N−1) which have grown to size N ,
this is shown by the left arrow (pointing rightwards) in Fig-
ure 4. The last term corresponds to the decrease resulting

5The initial size may be generalized to other small sizes; for
instance Tessone et al. consider entrant classes with size
drawn from a truncated power law [29] .
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ure 4. The last term corresponds to the decrease resulting

5The initial size may be generalized to other small sizes; for
instance Tessone et al. consider entrant classes with size
drawn from a truncated power law [29] .
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Variables

Ni Number of elements in class i
dgi Number of subclasses of class i
di Number of features of class i
κ Total number of classes
DG Total number of in-degrees (=subcategories)
pN,κ Fraction of classes having N elements

when the total number of classes is κ

Constants

m Number of elements added to the system af-
ter which a new class is added

w ∈ [0, 1] Probability that attachment of sub-
categories is preferential

Indices

i Index for the class

Table 1: Summary of notation used in Section 3

from classes which have gained an element and have become
of size (N + 1), this is shown by the right arrow (pointing
rightwards) in Figure 4. The equation for the class of size 1
is given by:

(κ+ 1)p1,(κ+1) = κ p1,κ + 1− m
m+ 1

p1,κ (5)

As the number κ of classes (and therefore the number of
elements κ(m+ 1)) in the system increases, the probability
that a new element is classified into a class of sizeN , given by
Equation 3, is assumed to remain constant and independent
of κ. Under this hypothesis, the stationary distribution for
class sizes can be determined by solving Equation 4 and
using Equation 5 as the initial condition. This is given by

pN = (1 + 1/m)B(N, 2 + 1/m) (6)

where B(., .) is the beta distribution. Equation 6 has been
termed Yule distribution [26]. Written for a continuous vari-
able N , it has a power law tail:

p(N) ∝ N−2− 1
m

From the above equation the exponent of the density func-
tion is between 2 and 3. Its cumulative size distribution
P (Nk > N), as given by Equation 1, has an exponent given
by

β = (1 + (1/m)) (7)

which is between 1 and 2. The higher the frequency 1/m
at which new classes are introduced, the bigger β becomes,
and the lower the average class size. This exponent is stable
over time although the taxonomy is constantly growing.

3.2 Preferential attachment models for net-
works and trees

A similar model has been formulated for network growth by
Barabási and Albert [2], which explains the formation of a
power law distribution in connectivity degree of nodes. It
assumes that the networks grow in terms of nodes and edges,
and that every newly added node to the system connects
with a fixed number of edges to existing nodes. Attachment
is again preferential, i.e. the probability for a newly added
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Figure 4: Illustration of Equation 4. Individual classes grow
constantly i.e., move to the right over time, as indicated by
arrows. A stationary distribution means that the height of
each bar remains constant.

node i to connect to a certain existing node j is proportional
to its number of existing edges of node j.
A node in the Barabási-Albert (BA) model corresponds a
class in Yule’s model, and a new edge to two newly assigned
element. Every added edge counts both to the degree of an
existing node j, as well as to the newly added node i. For
this reason the existing nodes j and the newly added node i
grow always by the same number of edges, implying m = 1
and consequently β = 2 in the BA-model, independently of
the number of edges that each new node creates.
The seminal BA-model has been extended in many ways.
For hierarchical taxonomies, we use a preferential attach-
ment model for trees by [17]. The authors considered growth
via directed edges, and explain power law formation in the
in-degree, i.e. the edges directed from children to parent in
a tree structure. In contrast to the BA-model, newly added
nodes and existing nodes do not increase their in-degree by
the same amount, since new nodes start with an in-degree
of 0. Leaf nodes thus cannot attract attachment of nodes,
and preferential attachment alone cannot lead to a power-
law. A small random term ensures that some nodes attach
to existing ones independently of their degree, which is the
analogous to the start of a new class in the Yule model.
The probability v that a new node attaches as a child to the
existing node i of with indegree dgi becomes

v(i) = w
di − 1
DG

+ (1− w)
1

DG
, (8)

where DG is the size of the system measured in the total
number of in-degrees. w ∈ [0, 1] denotes the probability that
the attachment is preferential, (1− w) the probability that
it is random to any node, independently of their numbers
of indegrees. As it has been done for the Yule process [26;
23; 14; 29], the stationary distribution is again derived via
the master Equation 4. The exponent of the asymptotic
power law in the in-degree distribution is β = 1 + 1/w.This
model is suitable to explain scaling properties of the tree or
network structure of large-scale web taxonomies, which have
also been analysed empirically, for instance for subcategories
of Wikipedia [7]. It has also been applied to directory trees
in [14].

3.3 Model for hierarchical web taxonomies
We now apply these models to large-scale web taxonomies
like DMOZ. Empirically, we uncovered two scaling laws: (a)
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m+ 1

p1,κ (5)

As the number κ of classes (and therefore the number of
elements κ(m+ 1)) in the system increases, the probability
that a new element is classified into a class of sizeN , given by
Equation 3, is assumed to remain constant and independent
of κ. Under this hypothesis, the stationary distribution for
class sizes can be determined by solving Equation 4 and
using Equation 5 as the initial condition. This is given by

pN = (1 + 1/m)B(N, 2 + 1/m) (6)

where B(., .) is the beta distribution. Equation 6 has been
termed Yule distribution [26]. Written for a continuous vari-
able N , it has a power law tail:

p(N) ∝ N−2− 1
m

From the above equation the exponent of the density func-
tion is between 2 and 3. Its cumulative size distribution
P (Nk > N), as given by Equation 1, has an exponent given
by

β = (1 + (1/m)) (7)

which is between 1 and 2. The higher the frequency 1/m
at which new classes are introduced, the bigger β becomes,
and the lower the average class size. This exponent is stable
over time although the taxonomy is constantly growing.

3.2 Preferential attachment models for net-
works and trees

A similar model has been formulated for network growth by
Barabási and Albert [2], which explains the formation of a
power law distribution in connectivity degree of nodes. It
assumes that the networks grow in terms of nodes and edges,
and that every newly added node to the system connects
with a fixed number of edges to existing nodes. Attachment
is again preferential, i.e. the probability for a newly added
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Figure 4: Illustration of Equation 4. Individual classes grow
constantly i.e., move to the right over time, as indicated by
arrows. A stationary distribution means that the height of
each bar remains constant.

node i to connect to a certain existing node j is proportional
to its number of existing edges of node j.
A node in the Barabási-Albert (BA) model corresponds a
class in Yule’s model, and a new edge to two newly assigned
element. Every added edge counts both to the degree of an
existing node j, as well as to the newly added node i. For
this reason the existing nodes j and the newly added node i
grow always by the same number of edges, implying m = 1
and consequently β = 2 in the BA-model, independently of
the number of edges that each new node creates.
The seminal BA-model has been extended in many ways.
For hierarchical taxonomies, we use a preferential attach-
ment model for trees by [17]. The authors considered growth
via directed edges, and explain power law formation in the
in-degree, i.e. the edges directed from children to parent in
a tree structure. In contrast to the BA-model, newly added
nodes and existing nodes do not increase their in-degree by
the same amount, since new nodes start with an in-degree
of 0. Leaf nodes thus cannot attract attachment of nodes,
and preferential attachment alone cannot lead to a power-
law. A small random term ensures that some nodes attach
to existing ones independently of their degree, which is the
analogous to the start of a new class in the Yule model.
The probability v that a new node attaches as a child to the
existing node i of with indegree dgi becomes

v(i) = w
di − 1
DG

+ (1− w)
1

DG
, (8)

where DG is the size of the system measured in the total
number of in-degrees. w ∈ [0, 1] denotes the probability that
the attachment is preferential, (1− w) the probability that
it is random to any node, independently of their numbers
of indegrees. As it has been done for the Yule process [26;
23; 14; 29], the stationary distribution is again derived via
the master Equation 4. The exponent of the asymptotic
power law in the in-degree distribution is β = 1 + 1/w.This
model is suitable to explain scaling properties of the tree or
network structure of large-scale web taxonomies, which have
also been analysed empirically, for instance for subcategories
of Wikipedia [7]. It has also been applied to directory trees
in [14].

3.3 Model for hierarchical web taxonomies
We now apply these models to large-scale web taxonomies
like DMOZ. Empirically, we uncovered two scaling laws: (a)
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one for the size distribution of leaf categories and (b) one for
the indegree (child-to-parent link) distribution of categories
(shown in Figure 2). These two scaling laws are linked in a
non-trivial manner: a category may be very small or even
not contain any websites, but nevertheless be highly con-
nected. Since on the other hand (a) and (b) arise jointly,
we propose here a model generating the two scaling laws
in a simple generic manner. We suggest a combination of
the two processes detailed in subsections 3.1 and 3.2 to de-
scribe the growth process: websites are continuously added
to the system, and classified into categories by human ref-
erees. At the same time, the categories are not a mere set,
but form a tree structure, which grows itself in two quanti-
ties: in the number nodes (categories) and in the number of
in-degrees of nodes (child-to-parent links, i.e. subcategory-
to-category links). Based on the rules for voluntary referees
of the DMOZ how to classify websites, we propose a sim-
ple combined description of the process. Altogether, the
database grows in three quantities:

(i) Growth in websites. New websites are assigned into
categories i, with probability p(i) ∝ Ni (Figure 5).
This assignment happens independently of the hier-
archy level of category. However, only leaf categories
may receive documents.

Figure 5: (i): A website is assigned to existing categories
with p(i) ∝ Ni.

(ii) Growth in categories. With probability 1/m, the ref-
erees assign a website into a newly created category,
at any level of the hierarchy (Figure 6).

This assumption would suffice to create a power law in
the category size distribution, but since a tree-structure
among categories exists, we also assume that the event
of category creation is also attaching at particular places
to the tree structure. The probability v(i) that a cate-
gory is created as the child of a certain parent category
i can depend in addition on the in-degree di of that
category (see Equation 9).
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Figure 6: (ii): Growth in categories is equivalent to growth
of the tree structure in terms of in-degrees.

(iii) Growth in children categories. Finally, the hierarchy
may also grow in terms of levels, since with a certain
probability (1 − w), new children categories are as-
signed independently of the number of children, i.e.

its in-degree di of the category i. (Figure 7). Like in
[17], the attachment probability to a parent i is

v(i) = w
dgi − 1
DG

+ (1− w)
ϵi
DG

. (9)
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Figure 7: (iii): Growth in children categories.

Equation 8, where ϵi = 1, would suffice to explain
power law in-degrees dgi and in category sizes Ni.

To link the two processes more plausibly, it can be
assumed that the second term in Equation 9 denoting
assignment of new ‘first children’ depends on the size
Ni of parent categories,

ϵi =
Ni

N
, (10)

since this is closer to the rules by which the referees
create new categories, but is not essential for the ex-
planation of the power laws. It reflects that the bigger
a leaf category, the higher the probability that referees
create a child category when assigning a new website
to it.

To summarize, the central idea of this joint model is to con-
sider two measures for the size of a category: the number of
its websites Ni (which governs the preferential attachment
of new websites), and its in-degree, i.e. the number of its
children dgi, which governs the preferential attachment of
new categories. To explain the power law in the category
sizes, assumptions (i) and (ii) are the requirements. For the
power law in the number of indegrees, assumptions (ii) and
(iii) are the requirements. The empirically found exponents
β = 1.1 and γ = 1.9 yield a frequency of new categories
1/m=0.1 and a frequency of new indegrees (1− w) = 0.9.

3.4 Other interpretations
Instead of assuming in Equations 9 and 10 that referees de-
cide to open a single child category, it is more realistic to
assume that an existing category is restructured, i.e. one or
several child categories are created, and websites are moved
into these new categories such that the parent category con-
tains less websites or even none at all. If one of the new
children categories inherits all websites of the parent cat-
egory (see Figure 8), the Yule model applies directly. If
the websites are partitioned differently, the model contains
effective shrinking of categories. This is not described by
the Yule model, and the master Equation 4 considers only
growing categories. However, it has been shown [29; 21]
that models including shrinking categories also lead to the
formation of power laws. Further generalizations compati-
ble with power law formation are that new categories do not
necessarily start with one document, and that the frequency
of new categories does not need to be constant.
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Equation 8, where ϵi = 1, would suffice to explain
power law in-degrees dgi and in category sizes Ni.

To link the two processes more plausibly, it can be
assumed that the second term in Equation 9 denoting
assignment of new ‘first children’ depends on the size
Ni of parent categories,

ϵi =
Ni

N
, (10)

since this is closer to the rules by which the referees
create new categories, but is not essential for the ex-
planation of the power laws. It reflects that the bigger
a leaf category, the higher the probability that referees
create a child category when assigning a new website
to it.

To summarize, the central idea of this joint model is to con-
sider two measures for the size of a category: the number of
its websites Ni (which governs the preferential attachment
of new websites), and its in-degree, i.e. the number of its
children dgi, which governs the preferential attachment of
new categories. To explain the power law in the category
sizes, assumptions (i) and (ii) are the requirements. For the
power law in the number of indegrees, assumptions (ii) and
(iii) are the requirements. The empirically found exponents
β = 1.1 and γ = 1.9 yield a frequency of new categories
1/m=0.1 and a frequency of new indegrees (1− w) = 0.9.

3.4 Other interpretations
Instead of assuming in Equations 9 and 10 that referees de-
cide to open a single child category, it is more realistic to
assume that an existing category is restructured, i.e. one or
several child categories are created, and websites are moved
into these new categories such that the parent category con-
tains less websites or even none at all. If one of the new
children categories inherits all websites of the parent cat-
egory (see Figure 8), the Yule model applies directly. If
the websites are partitioned differently, the model contains
effective shrinking of categories. This is not described by
the Yule model, and the master Equation 4 considers only
growing categories. However, it has been shown [29; 21]
that models including shrinking categories also lead to the
formation of power laws. Further generalizations compati-
ble with power law formation are that new categories do not
necessarily start with one document, and that the frequency
of new categories does not need to be constant.
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Figure 8: Model without and with shrinking categories. In
the left figure, a child category inherits all the elements of
its parent and takes its place in the size distribution.
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Figure 9: Category size distribution for each level of the
LSHTC2-DMOZ dataset.

3.5 Limitations
However, Figures 1 and 2 do not exhibit perfect power law
decay for several reasons. Firstly, the dataset is limited.
Secondly, the hypothesis that the assignment probability
(Equation 2) depends uniquely on the size of a category
might be too strong for web directories, neglecting the change
in importance of topics. In reality, big categories can exist
which receive only few new documents or none at all. Doro-
govtsev and Mendes [9] have studied this problem by intro-
ducing an assignment probability that decays exponentially
with age. For a low decay parameter they show that the
stronger this decay, the steeper the power law; for strong
decay, no power law forms. A last reason might be that ref-
erees re-structure categories in ways strongly deviating from
the rules (i) - (iii).

3.6 Statistics per hierarchy level
The tree-structure of a database allows also to study the
sizes of class belonging to a given level of the hierarchy. As
shown in Figure 3 the DMOZ database contains 5 levels of
different size. If only classes on a given level l of the hier-
archy are considered, we equally found a power law in cate-
gory size distribution as shown in Figure 9. Per-level power
law decay has also been found for the in-degree distribu-
tion. This result may equally be explained by the model
introduced above: Equations 2 and 9 respectively, are valid
also if instead of p(k) one considers the conditional proba-

bility p(l)p(i|l), where p(l) =
∑κ

i′=1,l
Ni′,l∑κ

i′=1
Ni′

is the probability

of assignment to a given level, and p(i|l) = Ni,l∑κ
i′=1,l

Ni′,l
the

probability of being assigned to a given class within that
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Figure 11: Number of features vs rank distribution.

level. The formation process may be seen as a Yule process
within a level if

∑κ
i′=1,l Ni′,l is used for the normalization

in Equation 2, and this formation happens with probabil-
ity p(l) that a website gets assigned into level l. Thereby,
the rate at ml at which new classes are created need not
be the same for every level, and therefore the exponent of
the power law fit may vary from level to level. Power law
decay for the per-level class size distribution is a straight-
forward corollary of the described formation process, and
will be used in Section 5 to analyse the space complexity of
hierarchical classifiers.

4. RELATION BETWEEN CATEGORY SIZE
AND NUMBER OF FEATURES

Having explained the formation of two scaling laws in the
database, a third one has been found for the number of
features di in each category, G(d) (see Figures 11 and 12).
This is a consequence of both the category size distribution,
shown (in Figure 1) in combination with another power law,
termed Heaps’ law [10]. This empirical law states that the
number of distinct words R in a document is related to the
length n of a document as follows

R(n) = Knα , (11)

where the empirical α is typically between 0.4 and 0.6. For
the LSHTC2-DMOZ dataset, Figure 10 shows that for the
collection of words and the collection of websites, similar ex-
ponents are found. An interpretation of this result is that
the total number words in a category can be measured ap-
proximately by the number of websites in a category, al-
though not all websites have the same length.
Figure 10 shows that bigger categories contain also more fea-
tures, but this increase is weaker than the increase in web-
sites. This implies that less very ‘feature-rich’ categories ex-
ist, which is also reflected in the high decay exponent δ = 1.9
of a power-law fit in Figure 11, (compared to the slower de-
cay of the category size distribution shown in figure 1 where
β = 1.1). Catenation of the size distribution measured in
features and Heaps’ law yields again size distribution mea-
sured in websites: P (i) = R(G(di)), i.e. multiplication of
the exponents yields that δ · α = 1.1 which confirms our
empirically found value β = 1.1.
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Secondly, the hypothesis that the assignment probability
(Equation 2) depends uniquely on the size of a category
might be too strong for web directories, neglecting the change
in importance of topics. In reality, big categories can exist
which receive only few new documents or none at all. Doro-
govtsev and Mendes [9] have studied this problem by intro-
ducing an assignment probability that decays exponentially
with age. For a low decay parameter they show that the
stronger this decay, the steeper the power law; for strong
decay, no power law forms. A last reason might be that ref-
erees re-structure categories in ways strongly deviating from
the rules (i) - (iii).
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The tree-structure of a database allows also to study the
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shown in Figure 3 the DMOZ database contains 5 levels of
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gory size distribution as shown in Figure 9. Per-level power
law decay has also been found for the in-degree distribu-
tion. This result may equally be explained by the model
introduced above: Equations 2 and 9 respectively, are valid
also if instead of p(k) one considers the conditional proba-

bility p(l)p(i|l), where p(l) =
∑κ

i′=1,l
Ni′,l∑κ

i′=1
Ni′

is the probability

of assignment to a given level, and p(i|l) = Ni,l∑κ
i′=1,l

Ni′,l
the

probability of being assigned to a given class within that

 1

 10

 100

 1000

 10000

 100  1000  10000  100000

#
 o

f 
ca

te
g

o
ri
e

s 
w

ith
 d

i>
d

category size in features d

δ =  1.9

Figure 11: Number of features vs rank distribution.

level. The formation process may be seen as a Yule process
within a level if

∑κ
i′=1,l Ni′,l is used for the normalization

in Equation 2, and this formation happens with probabil-
ity p(l) that a website gets assigned into level l. Thereby,
the rate at ml at which new classes are created need not
be the same for every level, and therefore the exponent of
the power law fit may vary from level to level. Power law
decay for the per-level class size distribution is a straight-
forward corollary of the described formation process, and
will be used in Section 5 to analyse the space complexity of
hierarchical classifiers.

4. RELATION BETWEEN CATEGORY SIZE
AND NUMBER OF FEATURES

Having explained the formation of two scaling laws in the
database, a third one has been found for the number of
features di in each category, G(d) (see Figures 11 and 12).
This is a consequence of both the category size distribution,
shown (in Figure 1) in combination with another power law,
termed Heaps’ law [10]. This empirical law states that the
number of distinct words R in a document is related to the
length n of a document as follows

R(n) = Knα , (11)

where the empirical α is typically between 0.4 and 0.6. For
the LSHTC2-DMOZ dataset, Figure 10 shows that for the
collection of words and the collection of websites, similar ex-
ponents are found. An interpretation of this result is that
the total number words in a category can be measured ap-
proximately by the number of websites in a category, al-
though not all websites have the same length.
Figure 10 shows that bigger categories contain also more fea-
tures, but this increase is weaker than the increase in web-
sites. This implies that less very ‘feature-rich’ categories ex-
ist, which is also reflected in the high decay exponent δ = 1.9
of a power-law fit in Figure 11, (compared to the slower de-
cay of the category size distribution shown in figure 1 where
β = 1.1). Catenation of the size distribution measured in
features and Heaps’ law yields again size distribution mea-
sured in websites: P (i) = R(G(di)), i.e. multiplication of
the exponents yields that δ · α = 1.1 which confirms our
empirically found value β = 1.1.
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5. SPACE COMPLEXITY OF LARGE-SCALE
HIERARCHICAL CLASSIFICATION

Fat-tailed distributions in large-scale web taxonomies high-
light the underlying structure and semantics which are use-
ful to visualize important properties of the data especially in
big data scenarios. In this section we focus on the applica-
tions in the context of large-scale hierarchical classification,
wherein the fit of power law distribution to such taxonomies
can be leveraged to concretely analyse the space complex-
ity of large-scale hierarchical classifiers in the context of a
generic linear classifier deployed in top-down hierarchical
cascade.
In the following sections we first present formally the task of
hierarchical classification and then we proceed to the space
complexity analysis for large-scale systems. Finally, we em-
pirically validate the derived bounds.

5.1 Hierarchical Classification
In single-label multi-class hierarchical classification, the train-
ing set can be represented by S = {(x(i), y(i))}Ni=1. In the
context of text classification, x(i) ∈ X denotes the vector
representation of document i in an input space X ⊆ Rd.
The hierarchy in the form of rooted tree is given by G =
(V, E) where V ⊇ Y denotes the set of nodes of G, and
E denotes the set of edges with parent-to-child orientation.
The leaves of the tree which usually form the set of target
classes is given by Y = {u ∈ V : !v ∈ V, (u, v) ∈ E}. Assum-
ing that there are K classes, the label y(i) ∈ Y represents
the class associated with the instance x(i). The hierarchical
relationship among categories implies a transition from gen-
eralization to specialization as one traverses any path from
root towards the leaves. This implies that the documents
which are assigned to a particular leaf also belong to the
inner nodes on the path from the root to that leaf node.

5.2 Space Complexity
The prediction speed for large-scale classification is crucial
for its application in many scenarios of practical importance.
It has been shown in [32; 3] that hierarchical classifiers are
usually faster to train and test time as compared to flat
classifiers. However, given the large physical memory of
modern systems, what also matters in practice is the size
of the trained model with respect to the available physical

memory. We, therefore, compare the space complexity of
hierarchical and flat methods which governs the size of the
trained model in large scale classification. The goal of this
analysis is to determine the conditions under which the size
of the hierarchically trained linear model is lower than that
of flat model.
As a prototypical classifier, we use a linear classifier of the
form wTx which can be obtained using standard algorithms
such as Support Vector Machine or Logistic Regression. In
this work, we apply one-vs-all L2-regularized L2-loss sup-
port vector classification as it has been shown to yield state-
of-the-art performance in the context of large scale text clas-
sification [12]. For flat classification one stores weight vec-
tors wy, ∀y and hence in a K class problem in d dimensional
feature space, the space complexity for flat classification is:

SizeFlat = d×K (12)

which represents the size of the matrix consisting ofK weight
vectors, one for each class, spanning the entire input space.
We need a more sophisticated analysis for computing the
space complexity for hierarchical classification. In this case,
even though the total number of weight vectors is much more
since these are computed for all the nodes in the tree and not
only for the leaves as in flat classification. Inspite of this, the
size of hierarchical model can be much smaller as compared
to flat model in the large scale classification. Intuitively,
when the feature set size is high (top levels in the hierarchy),
the number of classes is less, and on the contrary, when the
number of classes is high (at the bottom), the feature set
size is low.
In order to analytically compare the relative sizes of hierar-
chical and flat models in the context of large scale classifi-
cation, we assume power law behaviour with respect to the
number of features, across levels in the hierarchy. More pre-
cisely, if the categories at a level in the hierarchy are ordered
with respect to the number of features, we observe a power
law behaviour. This has also been verified empirically as il-
lustrated in Figure 12 for various levels in the hierarchy, for
one of the datasets used in our experiments. More formally,
the feature size dl,r of the r-th ranked category, according
to the number of features, for level l, 1 ≤ l ≤ L− 1, is given
by:

dl,r ≈ dl,1r
−βl (13)
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Fat-tailed distributions in large-scale web taxonomies high-
light the underlying structure and semantics which are use-
ful to visualize important properties of the data especially in
big data scenarios. In this section we focus on the applica-
tions in the context of large-scale hierarchical classification,
wherein the fit of power law distribution to such taxonomies
can be leveraged to concretely analyse the space complex-
ity of large-scale hierarchical classifiers in the context of a
generic linear classifier deployed in top-down hierarchical
cascade.
In the following sections we first present formally the task of
hierarchical classification and then we proceed to the space
complexity analysis for large-scale systems. Finally, we em-
pirically validate the derived bounds.
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ing set can be represented by S = {(x(i), y(i))}Ni=1. In the
context of text classification, x(i) ∈ X denotes the vector
representation of document i in an input space X ⊆ Rd.
The hierarchy in the form of rooted tree is given by G =
(V, E) where V ⊇ Y denotes the set of nodes of G, and
E denotes the set of edges with parent-to-child orientation.
The leaves of the tree which usually form the set of target
classes is given by Y = {u ∈ V : !v ∈ V, (u, v) ∈ E}. Assum-
ing that there are K classes, the label y(i) ∈ Y represents
the class associated with the instance x(i). The hierarchical
relationship among categories implies a transition from gen-
eralization to specialization as one traverses any path from
root towards the leaves. This implies that the documents
which are assigned to a particular leaf also belong to the
inner nodes on the path from the root to that leaf node.

5.2 Space Complexity
The prediction speed for large-scale classification is crucial
for its application in many scenarios of practical importance.
It has been shown in [32; 3] that hierarchical classifiers are
usually faster to train and test time as compared to flat
classifiers. However, given the large physical memory of
modern systems, what also matters in practice is the size
of the trained model with respect to the available physical
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hierarchical and flat methods which governs the size of the
trained model in large scale classification. The goal of this
analysis is to determine the conditions under which the size
of the hierarchically trained linear model is lower than that
of flat model.
As a prototypical classifier, we use a linear classifier of the
form wTx which can be obtained using standard algorithms
such as Support Vector Machine or Logistic Regression. In
this work, we apply one-vs-all L2-regularized L2-loss sup-
port vector classification as it has been shown to yield state-
of-the-art performance in the context of large scale text clas-
sification [12]. For flat classification one stores weight vec-
tors wy, ∀y and hence in a K class problem in d dimensional
feature space, the space complexity for flat classification is:

SizeFlat = d×K (12)

which represents the size of the matrix consisting ofK weight
vectors, one for each class, spanning the entire input space.
We need a more sophisticated analysis for computing the
space complexity for hierarchical classification. In this case,
even though the total number of weight vectors is much more
since these are computed for all the nodes in the tree and not
only for the leaves as in flat classification. Inspite of this, the
size of hierarchical model can be much smaller as compared
to flat model in the large scale classification. Intuitively,
when the feature set size is high (top levels in the hierarchy),
the number of classes is less, and on the contrary, when the
number of classes is high (at the bottom), the feature set
size is low.
In order to analytically compare the relative sizes of hierar-
chical and flat models in the context of large scale classifi-
cation, we assume power law behaviour with respect to the
number of features, across levels in the hierarchy. More pre-
cisely, if the categories at a level in the hierarchy are ordered
with respect to the number of features, we observe a power
law behaviour. This has also been verified empirically as il-
lustrated in Figure 12 for various levels in the hierarchy, for
one of the datasets used in our experiments. More formally,
the feature size dl,r of the r-th ranked category, according
to the number of features, for level l, 1 ≤ l ≤ L− 1, is given
by:

dl,r ≈ dl,1r
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where dl,1 represents the feature size of the category ranked
1 at level l and β > 0 is the parameter of the power law.
Using this ranking as above, let bl,r represent the number
of children of the r-th ranked category at level l (bl,r is the
branching factor for this category), and let Bl represents the
total number of categories at level l. Then the size of the
entire hierarchical classification model is given by:

SizeHier =
L−1∑

l=1

Bl∑

r=1

bl,rdl,r ≈
L−1∑

l=1

Bl∑

r=1

bl,rdl,1r
−βl (14)

Here level l = 1 corresponds to the root node, with B1 = 1.
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Figure 12: Power-law variation for features in different levels
for LSHTC2-a dataset, Y-axis represents the feature set size
plotted against rank of the categories on X-axis

We now state a proposition that shows that, under some con-
ditions on the depth of the hierarchy, its number of leaves,
its branching factors and power law parameters, the size of
a hierarchical classifier is below that of its flat version.

Proposition 1. For a hierarchy of categories of depth L
and K leaves, let β = min1≤l≤L βl and b = maxl,r bl,r. De-
noting the space complexity of a hierarchical classification
model by Sizehier and the one of its corresponding flat ver-
sion by Sizeflat, one has:

For β > 1, if β >
K

K − b(L− 1)
(> 1), then

Sizehier < Sizeflat

(15)

For 0 < β < 1, if
b(L−1)(1−β) − 1

(b(1−β) − 1)
<

1− β
b

K, then

Sizehier < Sizeflat

(16)

Proof. As dl,1 ≤ d1 and Bl ≤ b(l−1) for 1 ≤ l ≤ L, one
has, from Equation 14 and the definitions of β and b:

Sizehier ≤ bd1

L−1∑

l=1

b(l−1)∑

r=1

r−β

One can then bound
∑b(l−1)

r=1 r−β using ([32]):

b(l−1)∑

r=1

r−β <

[
b(l−1)(1−β) − β

1− β

]
for β ̸= 0, 1 (17)

leading to, for β ̸= 0, 1:

Sizehier < bd1

L−1∑

l=1

[
b(l−1)(1−β) − β

1− β

]

= bd1

[
b(L−1)(1−β) − 1

(b(1−β) − 1)(1− β)
− (L− 1)

β
(1− β)

]

(18)

where the last equality is based on the sum of the first terms
of the geometric series (b(1−β))l.

If β > 1, since b > 1, it implies that b(L−1)(1−β)−1
(b(1−β)−1)(1−β)

< 0.

Therefore, Inequality 18 can be re-written as:

Sizehier < bd1(L− 1)
β

(β − 1)

Using our notation, the size of the corresponding flat clas-
sifier is: Sizeflat = Kd1, where K denotes the number of
leaves. Thus:

If β >
K

K − b(L− 1)
(> 1), then Sizehier < Sizeflat

which proves Condition 15.
The proof for Condition 16 is similar: assuming 0 < β < 1, it
is this time the second term in Equation 18 (−(L−1) β

(1−β) )
which is negative, so that one obtains:

Sizehier < bd1

[
b(L−1)(1−β) − 1

(b(1−β) − 1)(1− β)

]

and then:

If
b(L−1)(1−β) − 1

(b(1−β) − 1)
<

1− β
b

K, then Sizehier < Sizeflat

which concludes the proof of the proposition.

It can be shown, but this is beyond the scope of this paper,
that Condition 16 is satisfied for a range of values of β ∈
]0, 1[. However, as is shown in the experimental part, it is
Condition 15 of Proposition 1 that holds in practice.
The previous proposition complements the analysis presented
in [32] in which it is shown that the training and test time of
hierarchical classifiers is importantly decreased with respect
to the ones of their flat counterpart. In this work we show
that the space complexity of hierarchical classifiers is also
better, under a condition that holds in practice, than the
one of their flat counterparts. Therefore, for large scale tax-
onomies whose feature size distribution exhibit power law
decay, hierarchical classifiers should be better in terms of
speed than flat ones, due to the following reasons:

1. As shown above, the space complexity of hierarchical
classifier is lower than flat classifiers.

2. ForK classes, only O(logK) classifiers need to be eval-
uated per test document as against O(K) classifiers in
flat classification.

In order to empirically validate the claim of Proposition 1,
we measured the trained model sizes of a standard top-down
hierarchical scheme (TD), which uses a linear classifier at
each parent of the hierarchy, and the flat one.
We use the publicly available DMOZ data of the LSHTC
challenge which is a subset of Directory Mozilla. More
specifically, we used the large dataset of the LSHTC-2010
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which concludes the proof of the proposition.

It can be shown, but this is beyond the scope of this paper,
that Condition 16 is satisfied for a range of values of β ∈
]0, 1[. However, as is shown in the experimental part, it is
Condition 15 of Proposition 1 that holds in practice.
The previous proposition complements the analysis presented
in [32] in which it is shown that the training and test time of
hierarchical classifiers is importantly decreased with respect
to the ones of their flat counterpart. In this work we show
that the space complexity of hierarchical classifiers is also
better, under a condition that holds in practice, than the
one of their flat counterparts. Therefore, for large scale tax-
onomies whose feature size distribution exhibit power law
decay, hierarchical classifiers should be better in terms of
speed than flat ones, due to the following reasons:

1. As shown above, the space complexity of hierarchical
classifier is lower than flat classifiers.

2. ForK classes, only O(logK) classifiers need to be eval-
uated per test document as against O(K) classifiers in
flat classification.

In order to empirically validate the claim of Proposition 1,
we measured the trained model sizes of a standard top-down
hierarchical scheme (TD), which uses a linear classifier at
each parent of the hierarchy, and the flat one.
We use the publicly available DMOZ data of the LSHTC
challenge which is a subset of Directory Mozilla. More
specifically, we used the large dataset of the LSHTC-2010
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edition and two datasets were extracted from the LSHTC-
2011 edition. These are referred to as LSHTC1-large, LSHTC2-
a and LSHTC2-b respectively in Table 2. The fourth dataset
(IPC) comes from the patent collection released by World
Intellectual Property Organization. The datasets are in the
LibSVM format, which have been preprocessed by stemming
and stopword removal. Various properties of interest for the
datasets are shown in Table 2.

Dataset #Tr./#Test #Classes #Feat.

LSHTC1-large 93,805/34,880 12,294 347,255
LSHTC2-a 25,310/6,441 1,789 145,859
LSHTC2-b 36,834/9,605 3,672 145,354
IPC 46,324/28,926 451 1,123,497

Table 2: Datasets for hierarchical classification with the
properties: Number of training/test examples, target classes
and size of the feature space. The depth of the hierarchy tree
for LSHTC datasets is 6 and for the IPC dataset is 4.

Table 3 shows the difference in trained model size (actual
value of the model size on the hard drive) between the two
classification schemes for the four datasets, along with the
values defined in Proposition 1. The symbol ▽ refers to the
quantity K

K−b(L−1) of condition 15.

Dataset TD Flat β b ▽
LSHTC1-large 2.8 90.0 1.62 344 1.12
LSHTC2-a 0.46 5.4 1.35 55 1.14
LSHTC2-b 1.1 11.9 1.53 77 1.09
IPC 3.6 10.5 2.03 34 1.17

Table 3: Model size (in GB) for flat and hierarchical models
along with the corresponding values defined in Proposition
1. The symbol ▽ refers to the quantity K

K−b(L−1)

As shown for the three DMOZ datasets, the trained model
for flat classifiers can be an order of magnitude larger than
for hierarchical classification. This results from the sparse
and high-dimensional nature of the problem which is quite
typical in text classification. For flat classifiers, the entire
feature set participates for all the classes, but for top-down
classification, the number of classes and features participat-
ing in classifier training are inversely related, when travers-
ing the tree from the root towards the leaves. As shown in
Proposition 1, the power law exponent β plays a crucial role
in reducing the model size of hierarchical classifier.

6. CONCLUSIONS
In this work we presented a model in order to explain the
dynamics that exist in the creation and evolution of large-
scale taxonomies such as the DMOZ directory, where the
categories are organized in a hierarchical form. More specif-
ically, the presented process models jointly the growth in
the size of the categories (in terms of documents) as well as
the growth of the taxonomy in terms of categories, which
to our knowledge have not been addressed in a joint frame-
work. From one of them, the power law in category size
distribution, we derived power laws at each level of the hier-
archy, and with the help of Heaps’s law a third scaling law
in the features size distribution of categories which we then

exploit for performing an analysis of the space complexity
of linear classifiers in large-scale taxonomies. We provided
a grounded analysis of the space complexity for hierarchical
and flat classifiers and proved that the complexity of the
former is always lower than that of the latter. The analysis
has been empirically validated in several large-scale datasets
showing that the size of the hierarchical models can be sig-
nificantly smaller that the ones created by a flat classifier.
The space complexity analysis can be used in order to es-
timate beforehand the size of trained models for large-scale
data. This is of importance in large-scale systems where the
size of the trained models may impact the inference time.
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the size of the categories (in terms of documents) as well as
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distribution, we derived power laws at each level of the hier-
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in the features size distribution of categories which we then
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of linear classifiers in large-scale taxonomies. We provided
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and flat classifiers and proved that the complexity of the
former is always lower than that of the latter. The analysis
has been empirically validated in several large-scale datasets
showing that the size of the hierarchical models can be sig-
nificantly smaller that the ones created by a flat classifier.
The space complexity analysis can be used in order to es-
timate beforehand the size of trained models for large-scale
data. This is of importance in large-scale systems where the
size of the trained models may impact the inference time.
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Adaptive classifier selection in large-scale hierarchical
classification. In ICONIP, pages 612–619, 2012.

[25] P. Richmond and S. Solomon. Power laws are dis-
guised boltzmann laws. International Journal of Mod-
ern Physics C, 12(03):333–343, 2001.

[26] H. A. Simon. On a class of skew distribution functions.
Biometrika, 42(3/4):425–440, 1955.

[27] C. Song, S. Havlin, and H. A. Makse. Self-similarity of
complex networks. Nature, 433(7024):392–395, 2005.

[28] H. Takayasu, A.-H. Sato, and M. Takayasu. Stable
infinite variance fluctuations in randomly amplified
langevin systems. Physical Review Letters, 79(6):966–
969, 1997.

[29] C. J. Tessone, M. M. Geipel, and F. Schweitzer. Sus-
tainable growth in complex networks. EPL (Euro-
physics Letters), 96(5):58005, 2011.

[30] K. G. Wilson and J. Kogut. The renormalization group
and the expansion. Physics Reports, 12(2):75–199,
1974.

[31] G.-R. Xue, D. Xing, Q. Yang, and Y. Yu. Deep classifi-
cation in large-scale text hierarchies. In Proceedings of
the 31st annual international ACM SIGIR conference
on Research and development in information retrieval,
SIGIR ’08, pages 619–626, 2008.

[32] Y. Yang, J. Zhang, and B. Kisiel. A scalability analysis
of classifiers in text categorization. In Proceedings of
the 26th annual international ACM SIGIR conference
on Research and development in informaion retrieval,
SIGIR ’03, pages 96–103, 2003.

[33] G. U. Yule. A mathematical theory of evolution, based
on the conclusions of dr. jc willis, frs. Philosophical
Transactions of the Royal Society of London. Series B,
Containing Papers of a Biological Character, 213:21–
87, 1925.

SIGKDD Explorations Volume 16, Issue 1 Page 56

[10] L. Egghe. Untangling herdan’s law and heaps’ law:
Mathematical and informetric arguments. Journal of
the American Society for Information Science and
Technology, 58(5):702–709, 2007.

[11] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-
law relationships of the internet topology. SIGCOMM.

[12] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang,
and C.-J. Lin. LIBLINEAR: A library for large linear
classification. Journal of Machine Learning Research,
9:1871–1874, 2008.

[13] T. Gao and D. Koller. Discriminative learning of re-
laxed hierarchy for large-scale visual recognition. In
IEEE International Conference on Computer Vision
(ICCV), pages 2072–2079, 2011.

[14] M. M. Geipel, C. J. Tessone, and F. Schweitzer. A com-
plementary view on the growth of directory trees. The
European Physical Journal B, 71(4):641–648, 2009.

[15] S. Gopal, Y. Yang, B. Bai, and A. Niculescu-Mizil.
Bayesian models for large-scale hierarchical classifica-
tion. In Neural Information Processing Systems, 2012.

[16] G. Jona-Lasinio. Renormalization group and probabil-
ity theory. Physics Reports, 352(4):439–458, 2001.
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