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Abstract
We propose Rademacher complexity bounds for multi-class classifiers trained with a two-step

semi-supervised model. In the first step, the algorithm partitions the partially labeled data and then
identifies dense clusters containing κ predominant classes using the labeled training examples such
that the proportion of their non-predominant classes is below a fixed threshold stands for clustering
consistency. In the second step, a classifier is trained by minimizing a margin empirical loss over
the labeled training set and a penalization term measuring the disability of the learner to predict the
κ predominant classes of the identified clusters. The resulting data-dependent generalization error
bound involves the margin distribution of the classifier, the stability of the clustering technique
used in the first step and Rademacher complexity terms corresponding to partially labeled training
data. Our theoretical result exhibit convergence rates extending those proposed in the literature
for the binary case, and experimental results on different multi-class classification problems show
empirical evidence that supports the theory.

1. Introduction

Learning with partially labeled data, or Semi-supervised learning (SSL), has been an active field
of study in the ML community these past twenty years. In this case, labeled examples are usually
supposed to be very few leading to an inefficient supervised model, while unlabeled training exam-
ples contain valuable information on the prediction problem at hand which exploitation may lead
to a performant prediction function. For this scenario, we assume available a set of labeled training
examples Sℓ = (xi, yi)1≤i≤n ∈ (X ×Y)n drawn i.i.d. with respect to a fixed, but unknown, proba-
bility distribution D over X ×Y and a set of unlabeled training examples Su = (xn+i)1≤i≤u ∈ X u

supposed to be drawn from the marginal distribution, DX , over the domain X . If Su is empty, then
the problem is cast into the supervised learning framework. The other extreme case corresponds to
the situation where Sℓ is empty and for which the problem reduces to unsupervised learning.



The issue of learnability with partially labeled data was studied under three related yet different
hypotheses of smoothness assumption, cluster assumption, and low density separation (Chapelle,
Schölkopf, & Zien, 2006; Zhu, 2005) and many advances have been made on both algorithmic and
theoretical front under these settings.

Although classification problems, for which the design of SSL techniques is appealing, are
multi-class in nature, the majority of theoretical results for semi-supervised learning has mainly
considered the binary case (Kääriäinen, 2005; Leskes, 2005; Amini, Laviolette, & Usunier, 2008a;
El-Yaniv & Pechyony, 2009; Balcan & Blum, 2010; Urner, Shalev-Shwartz, & Ben-David, 2011).
In this paper, we tackle the learning ability of multi-class classifiers trained on partially labeled data
by first identifying dense clusters covering labeled and unlabeled examples and then minimizing an
objective composed of the margin empirical loss of the classifier over the labeled training set, and
also a penalization term measuring the disability of the learner to predict the predominant classes of
dense clusters.

Our main result is a data-dependent generalization error bound for classifiers trained under
this setting and which exhibits a complexity term depending on the effectiveness of the clustering
technique to find homogenous regions of examples belonging to each class, the margin distribution
of the classifiers and the Rademacher complexities of the class of functions in use defined for labeled
and unlabeled data. The convergence rates deduced from the bound extends those proposed in
the literature for the binary case, further experiments carried out on text and image classification
problems, show that the proposed approach yields improved classification performance compared
to extensions of state-of-the-art SSL algorithms to the multi-class classification case.

In the following section, we first define our framework, then the learning task we address. Sec-
tion 3 presents the Rademacher generalization bound for a classifier trained with the proposed algo-
rithm. Section 4 positions our theoretical findings corcerning the state-of-the-art, and finally, section
5 details experimental results that support this approach.

2. Framework and Definitions

We are interested in the study of multi-class classification problems where the output space is
Y = {1, . . . ,K}, with K > 2. The semi-supervised multi-class classification algorithm that we
consider is tailored under the cluster assumption and operates in two steps depicted in the following
sections.

2.1 Partitioning of Data and Identifying κ-Uniformly Bounded Clusters with Level η

The first step consists in partitioning the unlabeled training observations, into G > 0 separate
clusters with a clustering algorithm A trained on Su, denoted by ΠSu .

Clusters of ΠSu that are well covered by classes in the labeled training set are then kept for
learning the classifier (Section 2.2). Formally, for a fixed κ ∈ {1, . . . ,K}, let Yκ(C) be the κ most
predominant classes of Y present in cluster C ∈ ΠSu . We then define κ-uniformly bounded clusters
with level η, Cκ(η), the set of clusters within ΠSu that are covered by their κ most predominant
classes such that the proportion of other classes within C not belonging to Yκ(C) is less than η/G :

Cκ(η) =
{
C ∈ ΠSu : Pn((x, y) ∈ C ∧ y ∈ Y \ Yκ(C)) ≤

η

G

}
. (1)



Table 1: Notations

X ⊆ Rd Input space,
Y = {1, . . . ,K} Output space,
K (resp. G) Number of classes (resp. clusters),
Sℓ (resp. Su) The set of labeled (resp. unlabeled) training examples of size n (resp. u),
AZ A clustering algorithm, A, trained on the set Z,
∆n(AZ ,AZ′ , Z̃) Distance between two clusterings AZ and AZ′ estimated over Z̃ (Eq. 9),
ΠSu Partition of the unlabeled set obtained by ASu ,
Π⋆ Limit clustering of the input space obtained by a particular instantiation of A,
Cκ(η) The set of κ-uniformly bounded clusters (Eq. 1),
Yκ(C) κ most predominant classes found in cluster C,
mh(x, y) The margin of an example (x, y) over the whole set Y (Eq. 3),
m′

h(x,Yκ(C)) The margin of an unlabeled example taken with respect to Yκ(C) (Eq. 7),
µh(x) The class prediction of h ∈ RX×Y for an example x,
R(h) Generalization error or the true risk (Eq. 2),
Ωρ ρ-margin loss (Eq. 8),
R̂ρ(h) Penalized empirical loss (Eq. 4),
Ωρ(h, Cκ(η)) Penalization term in R̂ρ(h) estimated over Cκ(η) (Eq. 6),
R̂ρ(h, Cj) Empirical risk defined over a single cluster Cj ∈ Cκ(η) (Eq. 14).

Where Pn the uniform probability distribution over Sℓ; defined for any subset B ⊆ Sℓ, as
Pn(B) = 1

ncard(B).

2.2 Learning Objective

In the second step, we address a learning problem that is to find, in a hypothesis set H ⊆ RX×Y , a
scoring function h ∈ H with low risk:

R(h) = E(x,y)∼D
[
1mh(x,y)⩽0

]
, (2)

where 1π is the indicator function andmh(x, y) is the margin of the function h at an example (x, y)
(Koltchinskii & Panchenko, 2002):

mh(x, y) = h(x, y)− max
y′∈Y\{y}

h(x, y′). (3)

This is achieved by minimizing a penalized empirical loss, defined for a given ρ > 0 :

R̂ρ(h) = R̂ρ(h, Sℓ) + Ωρ(h, Cκ(η)), (4)

composed of an empirical margin loss of h ∈ H on a labeled training set Sℓ,

R̂ρ(h, Sℓ) =
1

n

∑
(x,y)∈Sℓ

Φρ(mh(x, y)), (5)



Algorithm 1: Pseudo-code of the PMS2L algorithm

Input: Labeled data set Sℓ = (xi, yi)1≤i≤n ⊆ (X × Y)n;
Unlabeled data set Su = (xn+i)1≤i≤u ⊆ X u;
Hypothesis space H;
G the number of clusters, ASu : X → {1, . . . , G} the clustering algorithm found on Su,

κ ∈ N∗, and η > 0;

Stage 1: Using the labeled examples, Sℓ, identify the κ-bounded clusters in ΠSu with level
η, Cκ(η); // in accordance with Eq. (1)

Stage 2: Find a hypothesis h∗ ∈ H that minimizes the penalized objective function (Eq. 4) :

h∗ = argmin
h∈H

R̂ρ(h)

Output: h∗

and a penalization term that reflects the ability of the hypothesis h ∈ H to identify the κ most
predominant classes within the disjoint clusters of Cκ(η);

Ωρ(h, Cκ(η)) =
1

u

∑
C∈Cκ(η)

∑
x∈C

Φρ(m
′
h(x,Yκ(C))), (6)

where m′
h(x,Yκ(C)) is the margin of an unlabeled example taken with respect to the set of κ

predominant classes, Yκ(C) :

m′
h(x,Yκ(C)) = max

y∈Yκ(C)
h(x, y)− max

y∈Y\Yκ(C)
h(x, y), x ∈ C ⊂ Cκ(η), (7)

and, Φρ : R → [0, 1] is the ρ-margin loss defined as (Koltchinskii & Panchenko, 2002) :

∀z ∈ R,Φρ(z) =


0 if ρ ⩾ z,

1− z/ρ if 0 < z < ρ,

1 if z ⩽ 0.

(8)

Table 1 summarizes notations used throughout the paper and the pseudo-code of the proposed
2-step approach, referred to as Penalized Multi-Class Semi-Supervised Learning (PMS2L) in the
following, is given in algorithm 1.

The algorithm shares similarities with algorithms proposed by Amini, Truong, and Goutte
(2008b) and Urner et al. (2011), where the k-NN technique was used to increase the size of the
labeled training data by pseudo-labeling unlabeled examples that are in the nearest neighborhood of
labeled examples, for binary classification and bipartite ranking. In Rigollet (2007), another two-
step semi-supervised procedure is proposed, where in the first stage a clustering of the feature space
derived from the unlabeled data is produced and then each unlabeled observation, in a given cluster
is assigned the same class label than the majority of labeled examples belonging to that class within
the cluster.



In the present work, we tackle a more general situation by considering multi-class classification
problems and by relaxing the pseudo-labeling part which may be too aggressive in the multi-class
case. Our analysis is based on the ability of a clustering technique to capture the structure of
the data, and the ability of the classifier to identify predominant classes in κ-uniformly bounded
clusters, leading to a multi-class definition of the cluster assumption which states that penalization
over κ-uniformly bounded clusters with a bounded confident level η helps learning.

3. Theoretical Study

We now analyze how the use of unlabeled training data can improve generalization performance in
some cases. Essentially, the trade-off is that clustering offers additional knowledge on the problem,
therefore potentially helps to learn, but can also be of lower quality, which may degrade it.

3.1 Stable Clustering with the Bounded Difference Property

Before, let us first introduce notations that are used in the statement of the following results. We
consider a hard clustering algorithm AZ defined as a function found over a finite sample Z.

Our analyzes are based on a notion of stability of the clustering algorithm A.; measured as the
average number of examples in a given set Z̃ of size n that are in the exclusive disjunction of clusters
(present in one and absent from the other) found by A. over two sets Z and Z ′, and defined as :

∆n

(
AZ ,AZ′ , Z̃

)
= min

π

 1

n

∑
x∈Z̃

1AZ(x)̸=π(AZ′ (x))

 , (9)

where π : {1, . . . , G} → {1, . . . , G} is a permutation. It is straightforward to show that ∆n defines
a true metric, sometimes referred to as the minimal matching distance (Luxburg, 2010), on the space
of clusterings (see Th. 6 in the Appendix). Hence, the clustering algorithm A. is said to obey the
bounded difference property, if and only if for any i.i.d. samples Z, Z ′ ∼ D|Z|

X differing in exactly
one observation, and for any i.i.d. sample Z̃ ∼ Dn

X of size n, there exists a universal constant L
such that :

∆(AZ ,AZ′) = EZ̃∼Dn
X

[
∆n

(
AZ ,AZ′ , Z̃

)]
⩽ L

|Z|
. (10)

For some clustering algorithms such as k-means or k-hyperplane clustering, it has been shown
that the bounded difference property is tightly related to their (in)stability. We refer to (Luxburg,
2010; Luxburg, Bousquet, & Belkin, 2004; Rakhlin & Caponnetto, 2006; Thiagarajan, Rama-
murthy, & Spanias, 2011) and a number of references therein for the algorithmic details as well
as various notions of clustering instability, and to (Shamir & Tishby, 2007) for the relation be-
tween bounded differences property, stability and model selection. Furthermore, in the case where
a clustering algorithm A obeys the bounded difference property; it is said to be stable if for any
distribution DX over X there exists a unique limit clustering of the input space Π⋆, obtained by a
particular instantiation of the algorithm denoted by A⋆, such that for any Z drawn i.i.d. from DX
and for any sample Z̃ of size n drawn i.i.d. from the same distribution we have :

E
Z∼D|Z|

X
[∆(AZ ,A⋆)] ⩽ L

|Z|
. (11)



In this case, it is possible to (tightly) upper-bound the distance between A⋆ and the algorithm A
trained on any unlabeled training set Su, estimated over the labeled training set Sℓ: ∆n(ASu ,A⋆, Sℓ),
as it is stated in the following Lemma.

Lemma 1 Let Sℓ = (xi, yi)1≤i≤n and Su = (xn+i)1≤i≤u be a labeled and an unlabeled training
sets drawn i.i.d. according respectively to a probability distribution D over X ×Y , and its marginal
DX . For any 1 > δ > 0 and any stable clustering algorithm A that obeys the bounded differences
property with constant L > 0, the average number of examples in Sℓ that are in the exclusive
disjunction of clusters found by the clustering algorithm A on Su and by A⋆ is upper-bounded with
probability at least 1− δ as follows :

∆n(ASu ,A⋆, Sℓ) ⩽
L

u
+ L

√
log 2

δ

2u
+

√
log 2

δ

2n
. (12)

The proof is given in Appendix B. This result suggests that for any labeled and unlabeled
training data, if a clustering algorithm obeys the bounded differences property and that it is stable,
then with high probability, ΠSu covers as well the labeled training data as the limit partition Π⋆ (i.e.
most of the labeled examples would more likely be present in the intersection ΠSu ∩Π⋆).

3.2 Semi-Supervised Data-Dependent Bounds

Based on the previous lemma, we can define situations where the Empirical Risk Minimization prin-
ciple of algorithm PMS2L becomes consistent. This result is stated in Theorem (3) which provides
bounds on the generalization error of a multi-class classifier trained with the penalized empirical
loss defined above (Eq. 4).

The notion of function class capacity used in the bounds, is the labeled and unlabeled Rademacher
complexities of the function class FH = {f : x 7→ h(x, y) : y ∈ Y, h ∈ H}, defined respectively
as:

R∗
n(FH) =

∑
C∈Cκ(η)

Eσ sup
f∈FH

2

n

∑
xi∈Sℓ∩C

σif(xi),

R∗
u(FH) =

∑
C∈Cκ(η)

Eσ sup
f∈FH

2

u

∑
xi∈Su∩C

σif(xi),

Rn(FH) = Eσ sup
f∈FH

2

n

∑
xi∈Sℓ\Cκ(η)

σif(xi)

where σi’s, called Rademacher variables, are independent uniform random variables taking val-
ues in {−1,+1}; i.e. ∀i,P(σi = −1) = P(σi = +1) = 1

2 .

The proof of the theorem is based on the following Lemma that provides generalization bounds over
the true risk of any classifier h, found by algorithm PMS2L and estimated within a single confident
cluster; Cj ∈ Cκ(η) ⊆ ΠSu :

R(h, Cj) = E[µh(x) ̸= y ∧ x ∈ Cj ], (13)

with respect to the estimated empirical risk :

R̂ρ(h, Cj) =
1

n

∑
(x,y)∈Sℓ∩Cj

Φρ(mh(x, y)) +
1

u

∑
x∈Su∩Cj

Φρ(m
′
h(x,Yκ(Cj))). (14)



Lemma 2 Let H ⊆ RX×Y be a hypothesis set where Y = {1, . . . ,K}, and let Sℓ = (xi, yi)1≤i≤n

and Su = (xn+i)1≤i≤u be two sets of labeled and unlabeled training data, drawn i.i.d. respectively
according to a probability distribution over X × Y and a marginal distribution DX . Fix ρ > 0,
κ ∈ {1, . . . ,K} then for any 1 > δ > 0, the following multi-class classification generalization
error bound holds with probability at least 1 − δ for all h ∈ H learned by algorithm 1 over a
single κ-uniformly bounded cluster Cj ∈ Cκ(η) derived from Su by a clustering algorithm ASu that
partitions the input space into G clusters :

R(h, Cj) ≤ R̂ρ(h, Cj) +
η

G
+

2κ

ρ
R∗

n,j(FH) +
2K

ρ
R∗

u,j(FH)

+ 5

√
κnη(j) log

16K
δ

2n2
+ 5

√
κuη(j) log

16K
δ

2u2
+

7 log 8
δ

3(n− 1)
+

7 log 8
δ

3(u− 1)
,

where nη(j) = |Sℓ ∩ Cj |, uη(j) = |Su ∩ Cj |, R∗
n,j = Eσ sup

f∈FH

2
n

∑
xi∈Sℓ∩Cj σif(xi), and R∗

u,j =

Eσ sup
f∈FH

2
u

∑
xi∈Su∩Cj σif(xi).

The proof is provided in Appendix B. From this result and Lemma 1, we can then derive a
data-dependent generalization bound for any semi-supervised multi-class prediction function found
by algorithm PMS2L as stated below.

Theorem 3 Let H ⊆ RX×Y be a hypothesis set where Y = {1, . . . ,K}, and let Sℓ = ((xi, yi))
n
i=1

and Su = (xi)
n+u
i=n+1 be two sets of labeled and unlabeled training data, drawn i.i.d. respectively

according to a probability distribution over X × Y and a marginal distribution DX . Fix ρ > 0 and
κ ∈ {1, . . . ,K}, and consider a clustering algorithm A that obeys the bounded difference property
with constant L and is stable. If the κ-uniformly bounded clusters found in ΠSu are such that the
confident level η satisfies η ≤ ∆n(ASu ,A⋆, Sℓ), then for any 1 > δ > 0 and all h ∈ H found by
the PMS2L algorithm using ASu , the following multi-class classification generalization error bound
holds with probability at least 1− δ :

R(h)≤R̂ρ(h)+
L

u
+
2K

ρ
(R∗

u(FH)+Rn(FH))+
2κ

ρ
R∗

n(FH)+
7G log 14G

δ

3s∗
+

√
log 14

δ

t∗
+9

√
log 14KG

δ

v∗
,

where 1
s∗

.
=
(

2G
n−1 + G

u−1

)
, 1
t∗

.
= L2

u + 1
n ,

1
v∗

.
=

Gκuη

2u2 +
Gκnη+K(n−nη)

2n2 , nη = |Sℓ ∩ Cκ(η)| and
uη = |Su ∩ Cκ(η)|.

The proof is provided in Appendix B. This result implies that with stable clustering algorithms
obeying the bounded differences property, if the proportion of other classes than κ-predominant
ones in confident clusters is less than the number of labeled examples in the exclusive disjunction
of limit clusters and those found using the unlabeled training data, then with the strategy defined in
algorithm PMS2L we can expect to have interesting situations for learning prediction models as it is
stated in the following corollary.



Consider kernel-based hypotheses with K : X × X → R a PSD kernel and Φ : X → H its
associated feature mapping function, defined as :

HB =
{
(x, y) ∈ X × Y 7→ ⟨Φ(x),wy⟩ | W = (w1, . . . ,wK), ∥W∥H,2 ≤ B

}
.

Where ∥W∥H,2 is the Frobenius norm of the parameter matrix for a linear kernel, or the LH,2

group norm of W, defined as

∥W∥H,2 =

√√√√ K∑
k=1

∥wk∥2H.

In this case, we can derive the following corollary from theorem 3 :

Corollary 4 Let K : X × X → R be a PSD kernel and let Φ : X → H be the associated feature
mapping function. Assume that there exists R > 0 such that K(x,x) ≤ R2 for all x ∈ X . Then for
any 1 > δ > 0 and under the conditions and the definitions of theorem 3, the following multi-class
classification error bound holds for all hypothesis h ∈ HB learned by the proposed algorithm over
the set of κ-uniformly bounded set of clusters, Cκ(η), with probability at least 1− δ :

R(h) ≤ R̂ρ(h) +
L

u
+

2

ρ
RB

√
3k2∗
s∗

+
7 log 14G

δ

3s∗
+

√
log 14

δ

t∗
+ 5

√
3 log 14KG

δ

v∗

where 1
s∗

.
=
(

2G
n−1 + G

u−1

)
, 1
t∗

.
= L2

u + 1
n ,

1
v∗

.
=

Gκuη

2u2 +
Gκnη

2n2 +
K(n−nη)

2n2 and k2∗
v∗

.
= K2Guη

u2 +

κ2
Gnη

n2 +K2 n−nη

n2 .

Proof. From the proposition (8.1) in (Mohri, Rostamizadeh, & Talwalkar, 2012), and the Cauchy-

Schwartz inequality
(∑G

j=1 ajbj

)2
⩽
(∑G

j=1 a
2
j

)(∑G
j=1 b

2
j

)
with bj = 1 and aj =

√
uη(j), ∀j;

the Rademacher complexity of the class of linear classifiers in the feature space can be bounded as :

R∗
u(FH) ⩽

∑
Cj∈Cκ(η)

2

u
RB
√
uη(j) ⩽ 2RB

√
Guη
u2

,

where uη(j) in the number of unlabeled examples in η-confident cluster Cj and uη =
∑

j uη(j) is
the total number of unlabeled examples within a set of confident clusters Cκ(η).

Similarly, if nη(j) is the number of unlabeled examples in Cj ∈ Cκ(η) we have :

R∗
n(FH) ⩽

∑
Cj∈Cκ(η)

2

n
RB
√
nη(j) ⩽ 2RB

√
Gnη
n2

,

and also Rn(FH) ⩽ 2RB
√

n−nη

n2 . Applying the Cauchy-Schwartz inequality again we finally get :

2KRn(FH) + 2κR∗
n(FH) + 2KR∗

u(FH) ⩽ 2RB

√
3k2∗
s∗

□



The non-empirical terms of this bound determine the convergence rate of the proposed penalized
semi-supervised mutli-class algorithm, and hence following (Vapnik, 2000, Thm. 2.1, p.38), gives
insights on its consistency. These terms may be better explained using orders of magnitude (Knuth,
1976). If we now consider the common situation in semi-supervised learning where u ≫ n, and
nη ≈ n, uη ≈ u, and κ = O(1), L = O(1), G = O(K) then

k2∗
v∗

.
= K2Guη

u2
+ κ2

Gnη
n2

+K2n− nη
n2

= O

(
K3

u
+
K

n

)
,

1

v∗

.
=
Gκuη
u2

+
Gκnη
n2

+
K(n− nη)

n2
= O

(
K

u
+
K

n

)
,

and
1

s∗
= O

(
K

n
+
K

u

)
,

1

t∗

.
=
L2

u
+

1

n
= O

(
1

u
+

1

n

)
.

The convergence rate of the bound of corollary 4 is of the order

Õ

(√
K

n
+K

√
K

u

)
, (15)

where, for any real valued functions f and g the equality ; f(z) = Õ(g(z)) holds, if there exists
a constant α > 0 such that f(z) = O(g(z) logα g(z)) (Knuth, 1976). In the following section we
present an overview of the related-work and show that in the case where the clustering technique
A captures the true structure of the data, measured by the set of κ-uniformly bounded clusters with
rate η, resulting in approximations above, then for linear kernel-based hypotheses, the convergence
rate (15) is the direct extension of dimension-free convergence rates proposed in semi-supervised
learning for the binary case.

As for the opposite case n ≫ u the pseudo-labeling step does not help to learn, and even
can make the bounds worse than at the supervised case. The same situation takes place when the
number of classes is comparable to the number of objects and one can not clarify whether a cluster
is consistent or not.

Finally, we would like to emphasize that our primary target is the most practical case with
u≫ n and the number of classes comparable to the number of clusters.

4. Related Works and Discussion

Semi-supervised learning (SSL) approaches exploit the geometry of data to learn a prediction func-
tion from partially labeled training sets (Seeger, 2000). The three main SSL techniques; namely
graphical, generative and discriminant approaches, were mostly developed for the binary case and
tailored under smoothness, low-density separation and cluster assumptions (Zhu, 2005; Chapelle
et al., 2006; Amini & Usunier, 2015).

Graphical approaches construct an empirical graph where the nodes represent the training ex-
amples, and the edges of the graph reflect the similarity between them. These approaches are mostly
based on label spreading algorithms that propagate the class label of each labeled node to its neigh-
bors (Zhou, Bousquet, Lal, Weston, & Schölkopf, 2003; Zhu, 2002). Generative approaches nat-
urally exploit the geometry of data by modeling their marginal distributions. These methods are



developed under the cluster assumption and use the Bayes rule to make a decision. In the seminal
work of Castelli and Cover (1995) it is shown that, without extra assumptions relating marginal
distribution and actual distribution of labels, a sample of unlabeled data is of (almost) no help for
learning purpose. Recent work from Ben-David, Lu, and Pál (2008) investigated further the limita-
tions of semi-supervised learning and concluded that theoretical results for semi-supervised learning
should be accompanied by an additional assumption on the actual label distribution.

Discriminant approaches directly find the decision boundary without making any assumptions
on the marginal distribution of examples. The two most popular discriminant models are with-
out doubts co-training (Blum & Mitchell, 1998) and Transductive SVMs (Vapnik, 2000). The
co-training algorithm supposes that each observation is produced by two sources of information
and that each view-specific representation is rich enough to learn the parameters of the associated
classifier in the case where there are enough labeled examples available. The two classifiers are first
trained separately on the labeled data. A subset of unlabeled examples is then randomly drawn and
pseudo-labeled by each of the classifiers. The estimated output by the first classifier becomes the
desired output for the second classifier and reciprocally. Under this setting, Leskes (2005) proposed
a Rademacher complexity bound, where unlabeled data are used to decrease the disagreement be-
tween hypotheses from a class of functions H and proved that in some cases, the bound of the excess
risk |R(h)− R̂(h, Sℓ)| for any h ∈ H is of the order Õ

(
n−1/2 + u−1/2

)
. Another study in this line

of research is Tolstikhin, Zhivotovskiy, and Blanchard (2015). However, transductive learning tends
to produce a prediction function for only a fixed number of unlabeled examples. Transductive algo-
rithms generally use the distribution of unsigned margins of unlabeled examples in order to guide
the search of a prediction function and find the hyperplane in a feature space that separates the best
labeled examples and that does not pass through high density regions. The notion of transductive
Rademacher complexity was introduced in El-Yaniv and Pechyony (2009). In the best case, the
excess risk bound proposed in this paper is of the order Õ

(
u
√

min(u, n)/(n+ u)
)

.

Our two step multi-class SSL approach is in between generative and discriminant approaches,
and hence bears similarity with the study of Urner et al. (2011). The main difference is however

Table 2: Summary of the convergence rates of dimension free bounds of excess risks for different SSL
approaches.

Order of convergence rates Case; Reference

Õ

(
u
√

min(u,n)

n+u

)
Binary; (El-Yaniv & Pechyony, 2009)

Õ
(

1
n + 1√

u

)
Binary;(Balcan & Blum, 2010)

Õ
(

1√
n
+ 1√

u

)
Binary; (Leskes, 2005)

Õ
(

1√
n
+ 1√

u

)
Binary; (Kääriäinen, 2005)

Õ
(√

K√
n
+ K3/2

√
u

)
Multi-class; Corollary 4



that the proposed approach does not rely on any pseudo-labeling mechanism and that our analyzes
are based on the Rademacher complexity leading to dimension free data-dependent bounds. On
another level and under the PAC-Bayes setting, Kääriäinen (2005) showed that in the realizable
case where the hypothesis set contains the Bayes classifier, the obtained excess risk bound takes the
form inf

f∈F0

sup
g∈F0

d̂(f, g)+Õ
(
u−1/2

)
; where d̂(f, g) is a normalized empirical disagreements between

two hypothesis that correctly classify the labeled set and can be of order at least Õ
(
n−1/2

)
. The

convergence rates of the mentioned bounds are sum up in Table 2. From these results, it becomes
apparent that the convergence rate deduced from corollary 4, (Equation 15) extends those found in
Kääriäinen (2005) and Leskes (2005) for multi-class classification.

5. Experimental Results

We perform experiments on six publicly available datasets. The three first ones are Fungus,
Birds and Athletics that consist of three aggregations of lead nodes that go down from parent
nodes in the ImageNet hierarchy (Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy,
Khosla, Bernstein, Berg, & Fei-Fei, 2015). Each image is characterized by a Fisher vector represen-
tation as described in (Harchaoui, Douze, Paulin, Dudı́k, & Malick, 2012). The three others collec-
tions are respectively the MNIST database of handwritten digits, the pre-processed 20 Newsgroups
(20-NG) collection (Chang & Lin, 2011) and the USPS dataset (Hastie, Tibshirani, & Friedman,
2009). Table 2 resumes the characteristics of these datasets. The proportions of training and test
sets were kept fixed to those given in the released data files. Within the training set (Sℓ ∪ Su) we
randomly sampled labeled examples Sℓ, with different sizes, and used the remaining as unlabeled
data.

Table 2: Characteristics of datasets used in our experiments.
dataset |Sℓ ∪ Su| size of the test dimension, d # of classes, K

Birds 5785 5596 4096 196
Athletics 28752 28727 4096 51
Fungus 50270 50271 4096 134
20-NG 15936 3393 62061 20
MNIST 60000 10000 780 10
USPS 7291 2007 256 10

To validate the proposed penalized based multi-class semi-supervised learning approach (PMS2L),
we compared its results with respect to a multi-class extension of a popular SSL algorithm proposed
within each of the Generative, Graphical and Discriminant approaches. More precisely we consid-
ered the extension of the label propagation algorithm to the multi-class case (McLP) proposed by
Wang, Tu, and Tsotsos (2013). A generative SSL model based on the mixture of gaussians (S2GM),
the extension of TSVM (Joachims, 1999) to the multi-class case (McTSVM), and a purely supervised
technique which does not make use of any unlabeled examples in the training stage (SUP).

As the clustering algorithm A, we employed the Nearest Neighbor Clustering technique pro-
posed in Bubeck and Luxburg (2009), and fixed m = 4K, κ = 2 and η = 10−3. Meaning that
each cluster in Cκ(η) is mainly composed of the two most predominant classes within it. For the



second stage of PMS2L, as well as for SUP and McTSVM, we adapted the aggregated one-versus-all
approach using a linear kernel SVM that respects the conditions of corollary 4. The penalized ob-
jective function can be easily implemented using convex optimization tools for convex surrogates
of the 0/1 loss. The parameter C of the SVM classifier is determined by five fold cross-validation in
logarithmic range between 10−4 and 104 over the available labeled training data. Results are evalu-
ated over the test set using the accuracy, and the reported performance is averaged over 25 random
(labeled/unlabeled/test) sets of the initial collections.

Table 3 summarizes results obtained by SUP, PMS2L, McLP, S2GM and McTSVM when a very
small proportion of labeled training data is used in the learning of the models. We use boldface to
indicate the highest performance rates, and the symbol ↓ indicates that performance is significantly
worse than the best result, according to a Wilcoxon rank sum test used at a p-value threshold of 0.05
(Lehmann, 1975). From these results it becomes clear that

- The algorithm PMS2L performs significantly better than all of the four other algorithms, and
it improves over SUP by an average of 1.5 to 6.5% on different datasets.

- McLP and McTSVM also perform better than SUP, though not in the same range than pre-
viously, while the mixture of Gaussians S2GM does worse than SUP especially in the cases
where the dimension of the problem is high.

- Finally, the difference in performance between PMS2L and McTSVM is smaller than the one
between the former and McLP.

Our analysis of these results is that the Nearest Neighbor Clustering technique (Bubeck &
Luxburg, 2009) is effectively able to map correctly the considered data, into homogenous clus-
ters containing mostly unlabeled examples of the same class than the κ = 2 most predominant
classes contained in them. In this case, the penalized term of the objective function used to learn
the classifier (Equation 4) forcefully helps to pick a better hypothesis in the set of linear classifiers,
than when only labeled training data are used. Hence, for unlabeled examples within a given cluster,
the constraint of predicting the same classes than the κ = 2 most predominant classes of that clus-
ter makes the decision boundary to pass through regions where the unsigned margins of unlabeled

Table 3: Means and standard deviations of the classification accuracy on test data over the 25 trials
for each data set. ny refers to the average number of labeled examples per class in each data
set. ↓ indicates statistically significantly worse performance than the best result, shown in
bold, according to a Wilcoxon rank sum test (p < 0.05) (Lehmann, 1975).

Dataset ny n/(n+ u) SUP PMS2L McLP S2GM McTSVM

Birds 5 0.18 .294↓±.03 .344±.03 .303↓±.06 .286↓±.08 .312↓±.04

Athletics 43 0.08 .258↓±.03 .273±.02 .259↓±.05 .246↓±.07 .263±.04

Fungus 15 0.04 .121↓±.03 .160±.03 .125↓±.06 .107↓±.05 .134↓±.04

20-NG 16 0.02 .468↓±.05 .531±.03 .476↓±.06 .452↓±.04 .484↓±.04

MNIST 120 0.02 .767↓±.03 .799±.02 .771↓±.05 .758↓±.06 .781↓±.01

USPS 14 0.02 .790↓±.03 .821±.02 .796↓±.04 .788↓±.06 .801↓±.02



Figure 2: Accuracy in percentage with respect to the proportion of labeled examples in the initial
training set for ImageNet Birds (a), Athletics (b), Fungus (c); 20-NG (d), MNIST
(e), and USPS (f). Each reported performance on the test is averaged over 25 random
(labeled/unlabeled/test) sets of the initial collections.
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examples are small. As stated in section 4, this is exactly how TSVM works, and the proximity of
results between McTSVM and PMS2L, compared to the two other SSL algorithms can be explained
by the similitude of the assumptions leading to the development of these models.

However, the fundamental difference between these two algorithms in the iterative pseudo-
labeling of unlabeled examples (or not), would do that, when the proportion of labeled training data
is small, the iterative pseudo-labeling steps of McTSVM injects noise into the learning process at the
same level or even more than the true labeled information. The question therefore arises as to how
these two techniques behave for more labeled training data available at the learning phase?

In order to analyze more finely this situation, we compared SUP, PMS2L and McTSVM for an
increasing size of the labeled training data. Figure 2, illustrates this by showing the accuracy (in
percentage) with respect to the number of labeled examples in the initial labeled training set Sℓ. The
main observations drawn from these results, are:

- As expected, all performance curves increase monotonously with respect to the additional
labeled data and converge to the same performance. We note that when all the labeled training
data are used for learning the linear SVM gives the same results than those reported in the
state-of-the art; e.g. the MLP model with no hidden layer on USPS (LeCun, Bottou, Bengio,
& Haffner, 2001) and (Maji & Malik, 2009).

- Though McTSVM takes advantage of unlabeled data in its learning process, it is outperformed
by PMS2L.

- On ImageNet Birds and MNIST, a non-negligible quantity of labeled examples is necessary
for SUP to catch the performance of PMS2L learned with the same proportion of labeled data
than the one of Table 3, and the remaining unlabeled training data.

These behaviour first suggest that when enough labeled data is available, unlabeled data do not serve
the learning algorithm as for the reverse situation. These results suggest that for SSL discriminant
techniques designed following the low density separation hypothesis, a more convenient approach
than the pseudo-labeling strategy, used in most of these techniques, would be the incorporation of a
penalized factor concerning unlabeled examples into the objective of the learning algorithm as the
one proposed in Equation 4.

6. Conclusion

The contributions of this paper are twofold. First, we proposed a bound on the risk of a multi-class
classifier trained over partially labeled training data. We derived data-dependent bounds for the
generalization error of a classifier trained by minimizing an objective function that consists of an
empirical risk term, estimated over the labeled training set, and a penalized term corresponding to
the ratio of unlabeled examples of each cluster; within the κ bounded set of clusters, for which their
predicted class does not belong to the set of the associated κ predominant classes. The analysis
of this bound for kernel-based hypotheses reveals a convergence rate that is an extension to the
multi-class case, of some other rates over the bounds of the excess risk proposed in the literature.
Empirical results on a various datasets support our findings by showing that the proposed algorithm
is competitive compared to different extensions of binary semi-supervised learning algorithms and
that it may significantly increase classification performance in the most interesting situation, when
there are few labeled data available for training.
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Appendix A. Mathematical Tools

Theorem 5 (McDiarmid’s inequality) Let X1, . . . , Xu ∈ X u be a set of u ⩾ 1 independent ran-
dom variables and assume that there exist c1, . . . , cu > 0 such that ϕ : X u → R satisfies the
following condition:

|ϕ(x1, . . . , xi, . . . , xu)− ϕ(x1, . . . , x
′
i, . . . , xu)| ≤ ci,

for all i ∈ [[1, u]] and any points x1, . . . , xu, x
′
i ∈ X . Let ϕ(S) denote ϕ(X1, . . . , Xu), then, for all

ϵ > 0, the following inequalities hold:

P[ϕ(S)− E[ϕ(S)] ≥ ϵ] ≤ exp

(
−2ϵ2∑u
i=1 c

2
i

)
and P[ϕ(S)− E[ϕ(S)] ≤ ϵ] ≤ exp

(
−2ϵ2∑u
i=1 c

2
i

)
.

Theorem 6 (Minimal matching distance) Let AZ1 and AZ2 be two partitions obtained by a clus-
tering algorithm A over two finite sets Z1 and Z2. Then for any sample set Z̃ ⊆ X , of size n, where
∀x ∈ Z̃,AZ(x) ∈ {1, . . . , G} is the partition of x; the function

∆n : (AZ1 ,AZ2 , Z̃) 7→ min
π

1

n

∑
x∈Z̃

1AZ1
(x) ̸=π(AZ2

(x)),

is a metric over the space of clusterings.

Proof. For all AZ1 ,AZ2 ,AZ3 , and Z̃ the following conditions are indeed satisfied :

1. non-negativity: ∆n(AZ1 ,AZ2 , Z̃) ≥ 0,

2. identity: ∆n(AZ1 ,AZ2 , Z̃) = 0 ⇔ AZ1 = AZ2 ,

3. symmetry: ∆n(AZ1 ,AZ2 , Z̃) = ∆n(AZ2 ,AZ1 , Z̃),

4. triangle inequality: ∆n(AZ1 ,AZ2 , Z̃) ≤ ∆n(AZ1 ,AZ3 , Z̃) + ∆n(AZ2 ,AZ3 , Z̃).

The last inequality is due to the fact that for any permutations π, π1 and π2, we have :

∀x ∈ Z̃,1AZ1
(x) ̸=π(AZ2

(x)) ⩽ 1AZ1
(x)̸=π1(AZ3

(x)) + 1AZ3
(x) ̸=π2(AZ2

(x)),

summing over all x ∈ Z̃ gives:

1

n

∑
x∈Z̃

1AZ1
(x)̸=π(AZ2

(x)) ⩽
1

n

∑
x∈Z̃

1AZ1
(x)̸=π1(AZ3

(x)) +
1

n

∑
x∈Z̃

1AZ3
(x)̸=π2(AZ2

(x)).



As the last inequality is valid for any permutations π, π1 and π2 over Z̃ we have :

∆n(AZ1 ,AZ2 , Z̃) = min
π

1

n

∑
x∈Z̃

1AZ1
(x)̸=π(AZ2

(x))

⩽ min
π1

1

n

∑
x∈Z̃

1AZ1
(x)̸=π1(AZ3

(x)) +min
π2

1

n

∑
x∈Z̃

1AZ3
(x)̸=π2(AZ2

(x))

= ∆n(AZ1 ,AZ3 , Z̃) + ∆n(AZ2 ,AZ3 , Z̃).

□

Theorem 7 (Data-dependent Bennett’s inequality, see Maurer & Pontil, 2009, Thm. 4) Let X ,
X1, . . . , Xn be i.i.d. random variables with values in [0, 1] and let δ > 0. Then with probability at
least 1− δ in (X1, . . . , Xn) we have

E [X]− 1

n

n∑
i=1

Xi ⩽

√
2Vn(X) log 2

δ

n
+

7 log 2
δ

3(n− 1)
,

where Vn(X) is the sample variance

Vn(X) =
1

n(n− 1)

∑
1⩽i<j⩽n

(Xi −Xj)
2

Lemma 8 (Lemma 8.1 see Mohri et al., 2012) Let F1, . . . , Fl be l hypothesis sets in RX , l ≥ 1,
and let G = {max(h1, . . . , hl) : hi ∈ Fi}, 1 ≤ i ≤ l. Then, for any sample S of size n, the
empirical Rademacher complexity of G can be upper bounded as follows:

R∗
n(G) ⩽

l∑
i=1

R∗
n(Fi).

Theorem 9 (Rademacher generalization bounds see Mohri et al., 2012, Thm. 8.1) Let G be a
family of functions mapping from X to [0, 1]. Then for any 1 > δ > 0, with probability at least 1−δ
we have for all g ∈ G :

E[g] ⩽ 1

n

n∑
i=1

g(zi) +R∗
n(G) + 3

√
log 2

δ

2n

Definition 10 (L-regular loss, see Lei, Dogan, Binder, & Kloft, 2015, definition 2) A loss func-
tion ℓ is said to be L-regular if :

1. ℓ(t) bounds the 0-1 loss from above: ℓ(t) ⩾ 1t⩽0;

2. ℓ is L-Lipschitz in the sense |ℓ(t1)− ℓ(t2)| ⩽ L|t1 − t2|;

3. ℓ(t) is decreasing and it has a zero point cℓ, i.e., ℓ(cℓ) = 0.



Theorem 11 (Multi-class Rademacher generalization bounds; see Lei et al., 2015, remark 6)
Let FH ⊂ RX×Y be a hypothesis class with Y = {1, . . . ,K}. Let ℓ be a L-regular loss function
and denote Bℓ

.
= sup(x,y),h ℓ(mh(x, y)).

Suppose that the examples Sℓ = {(xi, yi); i ∈ {1, . . . , n}} are i.i.d with respect to a fixed yet
unknown probability distribution defined on X × Y . Then, for any δ > 0, with probability at least
1− δ, the following multi-class classification generalization bound holds for any h ∈ H:

R(h) ⩽ 1

n

n∑
i=1

ℓ(mh(xi, yi)) + 2LKR∗
n(FH) + 3Bℓ

√
log 2

δ

2n
,

where FH = {f : x 7→ h(x, y) : y ∈ Y, h ∈ H}.

Note that, up-to a constant similar bounds were obtained in (Kuznetsov, Mohri, & Syed, 2015) and
(Maximov & Reshetova, 2016).

Appendix B. Full Proofs

Lemma 1 Let Sℓ = (xi, yi)1≤i≤n and Su = (xn+i)1≤i≤u be a labeled and an unlabeled training
sets drawn i.i.d. according respectively to a probability distribution D over X ×Y , and its marginal
DX . For any 1 > δ > 0 and any stable clustering algorithm A that obeys the bounded differences
property with constant L > 0, the following inequality holds with probability at least 1− δ :

∆n(ASu ,A⋆, Sℓ) ⩽
L

u
+ L

√
log 2

δ

2u
+

√
log 2

δ

2n
.

Proof. As the function ∆n (Eq. 9) is a metric (Appendix, Th. 6); for any labeled training set
Sℓ ⊆ (X ×Y)n and any cluterings AZ ,AZ′ found by the algorithm A over the sets Z,Z ′, we have
by the triangle inequality :

∆n(AZ ,A⋆, Sℓ) ⩽ ∆n(AZ ,AZ′ , Sℓ) + ∆n(AZ′ ,A⋆, Sℓ),

hence by the non-negativity of the distance function we have :

|∆n(AZ ,A⋆, Sℓ)−∆n(AZ′ ,A⋆, Sℓ)| ⩽ ∆n(AZ ,AZ′ , Sℓ). (16)

Consider the following multivariate function defined over unlabeled training sets of size u;

ϕ : X u → R
Z 7→ ESℓ∼Dn [∆n(AZ ,A⋆, Sℓ)].

For any unlabeled training sets, Su and S′
u drawn i.i.d. with respect to the marginal DX that differ

only in one observation we have :∣∣ϕ(Su)− ϕ(S′
u)
∣∣ = ∣∣ESℓ∼Dn

(
∆n(ASu ,A⋆, Sℓ)−∆n(AS′

u
,A⋆, Sℓ)

)∣∣
⩽ ESℓ∼Dn

∣∣(∆n(ASu ,A⋆, Sℓ)−∆n(AS′
u
,A⋆, Sℓ)

)∣∣ (17)

⩽ ESℓ∼Dn

[
∆n(ASu ,AS′

u
, Sℓ)

]
= ∆(ASu ,AS′

u
) ⩽ L

u
. (18)



where (Eq. 17) is due to the triangle inequality with absolute value; and (Eq. 18) results from (Eq.
16) and the bounded-difference property of algorithm A (Eq. 10).

Then by McDiarmid’s inequality (Appendix, Th. 5) for any ϵ > 0 we get :

P
[
ϕ(Su)− ESu∼Du

X
ϕ(Su) ⩾ ϵ

]
⩽ exp

(
−2ϵ2u

L2

)
Setting the right-hand side to be δ/2, and solving for ϵ, we obtain that with probability at least 1− δ

2 :

ϕ(Su) ⩽ ESu∼Du
X
[ϕ(Su)] + L

√
log 2

δ

2u
⩽ L

u
+ L

√
log 2

δ

2u
. (19)

Where the last inequality is due to the stability of the clustering algorithm A (Eq. 11). Further-
more, by bounding ϕ(Su) = ESℓ∼Dn [∆n(ASu ,A⋆, Sℓ)] in terms of Sℓ using again the McDiarmid
inequality we have for any ϵ > 0 :

P [∆n(ASu ,A⋆, Sℓ)− ϕ(Su) ⩾ ϵ] ⩽ e−2nϵ2 ,

Indeed, if we consider the multivariate function ψ : Sℓ 7→ ∆n(ASu ,A⋆, Sℓ); changing a single
labeled observation in Sℓ could not change ∆n(ASu ,A⋆, Sℓ) on more than 1/n by definition (Eq.
9). Hence, by setting the right-hand side to be δ/2, and solving for ϵ, we obtain that with probability
greater than 1− δ

2 :

∆n(ASu ,A⋆, Sℓ) ⩽ ϕ(Su) +

√
log 2

δ

2n
. (20)

Applying the union bound on both inequalities (Eq. 19) and (Eq. 20), we finally get that for any
labeled and unlabeled training sets Sℓ and Su and with probability at least 1− δ :

∆n(ASu ,A⋆, Sℓ) ⩽
L

u
+L

√
log 2

δ

2u
+

√
log 2

δ

2n
. □

Lemma 2 Let H ⊆ RX×Y be a hypothesis set where Y = {1, . . . ,K}, and let Sℓ = (xi, yi)1⩽i⩽n

and Su = (xn+i)1⩽i⩽u be two sets of labeled and unlabeled training data, drawn i.i.d. respectively
according to a probability distribution over X × Y and a marginal distribution DX . Fix ρ > 0,
κ ∈ {1, . . . ,K} then for any 1 > δ > 0, the following multi-class classification generalization
error bound holds with probability at least 1 − δ for all h ∈ H learned by algorithm 1 over a
single κ-uniformly bounded cluster Cj ∈ Cκ(η) derived from Su by a clustering algorithm ASu that
partitions the input space into G clusters :

R(h, Cj) ≤ R̂ρ(h, Cj) +
η

G
+

2κ

ρ
R∗

n,j(FH) +
2K

ρ
R∗

u,j(FH)

+ 5

√
κnη(j) log

8K
δ

2n2
+ 5

√
κuη(j) log

8K
δ

2u2
+

7 log 8
δ

3(n− 1)
+

7 log 8
δ

3(u− 1)
,

where nη(j) = |Sℓ ∩ Cj |, uη(j) = |Su ∩ Cj |, R∗
n,j = Eσ sup

f∈FH

2
n

∑
xi∈Sℓ∩Cj σif(xi), and R∗

u,j =

Eσ sup
f∈FH

2
u

∑
xi∈Su∩Cj σif(xi).



Proof. We start with the decomposition of the risk estimated in a single κ-uniformly bounded
cluster Cj ∈ Cκ(η), by considering two situations where the prediction µh(x) = argmax

y∈Y
h(x, y)

falls within any set of confident clusters and without them respectively:

R(h, Cj) = E[µh(x) ̸= y ∧ x ∈ Cj ] ⩽E(x,y)∼D[µh(x) ̸= y ∧ µh(x) = µh(x,Y ′
κ) ∧ x ∈ Cj ]+

E(x,y)∼D[µh(x) ̸= y ∧ µh(x) ̸= µh(x,Y ′
κ) ∧ x ∈ Cj ] (21)

where µh(x,Y ′
κ) = argmax

y∈Y ′
κ

h(x, y) and Y ′
κ ⊆ Y , |Y ′

κ| ⩽ κ.

The first term in the inequality above involves the margin of examples and it can be upper-
bounded using the definition of the ρ-margin loss (Eq. 8) estimated over the labeled examples that
are in cluster Cj :

E(x,y)∼D[µh(x) ̸=y ∧ µh(x)=µh(x,Y ′
κ)∧x ∈ Cj ]=E(x,y)∼D[µh(x,Y ′

κ) ̸=y∧x ∈ Cj ]
⩽ ESℓ∼Dn [Φρ(mh(x, y,Y ′

κ))∧x∈Cj ], (22)

where mh(x, y,Y ′
κ) = h(x, y)−maxy′∈Y ′

κ\{y} h(x, y
′),x ∈ Cj .

Expected risk over a single cluster Cj can be decomposed through conditional risk as :

ESℓ∼Dn [Φρ(mh(x, y,Y ′
κ)) ∧ x ∈ Cj ] = ESℓ∼Dn [Φρ(mh(x, y,Y ′

κ))
∣∣x ∈ Cj ]×

ESℓ∼Dn [x ∈ Cj ] (23)

From the data-dependent Bennett’s inequality (appendix A, theorem 7), we have with probability at
least 1− δ/4 :

ESℓ∼Dn [x ∈ ∩Cj ] ⩽
nη(j)

n
+

√
2nη(j) log

8
δ

n2
+

7 log 8
δ

3(n− 1)
, (24)

where nη(j) = |Sℓ ∩ Cj |, and the sample variance, which is upper-bounded by :

Vn(x ∈ Cj) =
nη(j)(n− nη(j))

n(n− 1)
⩽ nη(j)

n
.

Since 0 ⩽ Φρ(·) ⩽ 1 and so 0 ⩽ E(x,y)∼D[Φρ(mh(x, y,Y ′
κ))
∣∣x ∈ Sℓ ∩ Cj ] ⩽ 1, we have from

(23) and (24) with probability at least 1− δ/4 :

ESℓ∼Dn [Φρ(mh(x, y,Y ′
κ) ∧ x ∈ Cj ] ⩽

nη(j)

n
ESℓ∼Dn [Φρ(mh(x, y,Y ′

κ))
∣∣x ∈ Cj ]+√

2nη(j) log
8
δ

n2
+

7 log 8
δ

3(n− 1)
(25)

Further, the ρ-margin loss function Φρ(·) (Eq. (8)) is 1/ρ-Lipschitz, from the multi-class classi-
fication generalization bound proposed in (Lei et al., 2015) (appendix A, theorem 11); it then comes
that for any fixed set Y ′

κ ⊂ Y , |Y ′
κ| ⩽ κ and any 1 > δ > 0 with probability at least 1− δ/4Kκ we

have for all h ∈ H :



ESℓ∼Dn [Φρ(mh(x, y,Y ′
κ)
∣∣x ∈ Cj ]

⩽ 1

nη(j)

∑
(x,y)∈Sℓ∩Cj

Φρ(mh(x, y,Y ′
κ)) +

2κ

ρ
R∗

nη(j)
(F) + 3

√
log 8Kκ

δ

2nη(j)

⩽ 1

nη(j)

∑
(x,y)∈Sℓ∩Cj

Φρ(mh(x, y,Y ′
κ)) +

2κ

ρ
R∗

nη(j)
(F) + 3

√
κ log 8K

δ

2nη(j)
, (26)

where, R∗
nη(j)

(F) = Eσ sup
f∈FH

2
nη(j)

∑
xi∈Sℓ∩Cj σif(xi).

Now for any possible set of κ predominant classes Yκ in Cj , and using the union bound and
the inequality

∑k
i=1

(
K
i

)
⩽ 2Kκ, it comes from (25) and (26) and the union bound, we have with

probability at least 1− δ/2 :

ESℓ∼Dn [Φρ(mh(x, y,Yκ)) ∧ x ∈ Cj ] ⩽

1

n

∑
(x,y)∈Sℓ∩Cj

Φρ(mh(x, y,Yκ)) +
2κ

ρ
R∗

n,j(F) + 5

√
κnη(j) log

8K
δ

2n2
+

7 log 8
δ

3(n− 1)
, (27)

Where R∗
n,j = Eσ sup

f∈FH

2
n

∑
xi∈Sℓ∩Cj σif(xi). By decomposing the sum in the first term of the

above inequality, and considering the two cases where the class label y is within or without Yκ :∑
(x,y)∈Sℓ∩Cj

Φρ(mh(x, y,Yκ)) ⩽
∑

(x,y)∈Sℓ∩Cj∧y∈Yκ

Φρ(mh(x, y,Yκ)) +
∑

(x,y)∈Sℓ∩Cj∧y/∈Yκ

Φρ(mh(x, y,Yκ)),

Here we are in the case where µh(x) = µh(x,Yκ) (Eq. 21) so, ∀(x, y) ∈ Sℓ ∩ Cj ∧ y ∈
Yκ, Φρ(mh(x, y,Yκ)) = Φρ(mh(x, y)), and ∀(x, y) ∈ Sℓ ∩ Cj ∧ y /∈ Yκ,Φρ(mh(x, y,Yκ)) ⩽
1y ̸∈Yκ∧x∈Cj . Hence, for any sample Sℓ and a set of predominant classes Yκ we have

1

n

∑
(x,y)∈Sℓ∩Cj

Φρ(mh(x, y,Yκ)) ⩽
1

n

∑
(x,y)∈Sℓ∩Cj

Φρ(mh(x, y)) +
1

n

∑
(x,y)∈Sℓ

1y ̸∈Yκ∧x∈Cj

⩽ 1

n

∑
(x,y)∈Sℓ∩Cj

Φρ(mh(x, y)) +
1

n

∑
(x,y)∈Sℓ

1y ̸∈Yκ∧x∈Cj .

From definition (1) we have 1
n

∑
(x,y)∈Sℓ

1y ̸∈Yκ∧x∈Cj ⩽ η/G, and so

E(x,y)∼D[µh(x) ̸= y ∧ µh(x) = µh(x,Yκ) ∧ x ∈ Cj ] ⩽

1

n

∑
(x,y)∈Sℓ∩Cj

Φρ(mh(x, y)) +
η

G
+

2κ

ρ
R∗

n,j(F) + 5

√
κnη(j) log

8K
δ

2n2
+

7 log 8
δ

3(n− 1)
.

(28)



Further, the second term in inequality (21) for any set Yκ ⊂ Y , |Yκ| ⩽ κ can be upperbounded
using unlabeled data that are in cluster Cj :

E[µh(x) ̸= y ∧ µh(x) ̸= µh(x,Yκ) ∧ x ∈ Cj ] ⩽ ESu∼Du
X
[µh(x) ̸= µh(x,Yκ) ∧ x ∈ Cj ]

⩽ ESu∼Du
X
[Φρ(m

′
h(x,Yκ)) ∧ x ∈ Cj ],

where m′
h(x,Yκ) = maxy∈Yκ(Cj) h(x, y)−maxy∈Y\Yκ(Cj) h(x, y), x ∈ Cj .

As the ρ-margin loss has its values in [0, 1], from the standard Rademacher complexity bound
(appendix A, theorem 9) over i.i.d. sample Su ∩ Cj , for any 0 > δ > 1 and Yκ ⊆ Y it comes that
with probability at least 1− δ/4 :

ESu∼Du
X
[Φρ(m

′
h(x,Yκ))

∣∣x ∈ Cj ] ⩽
1

uη(j)

∑
x∈Cj∩Su

Φρ(m
′
h(x,Yκ))+

∑
Cj∈Cκ(η)

Eσ sup

f∈G
Cj
1 ∪G

Cj
2

2

uη(j)

∑
xi∈Su∩Cj

σif(xi) + 3

√
log 8Kκ

δ

2uη(j)
, (29)

where GCj
1 = {maxy∈Yκ(Cj) h(x, y), h ∈ FH} and GCj

2 = {maxy ̸∈Yκ(Cj) h(x, y), h ∈ FH}. Due to
the monotonicity of supremum, we have for any Cj ∈ Cκ(η) :

Eσ sup

f∈G
Cj
1 ∪G

Cj
2

2

uη(j)

∑
xi∈Su∩Cj

σif(xi)

⩽ Eσ sup

f∈G
Cj
1

2

uη(j)

∑
xi∈Su∩Cj

σif(xi) + Eσ sup

f∈G
Cj
2

2

uη(j)

∑
xi∈Su∩Cj

σif(xi)

By Lemma 8 (Appendix A) we have :

Eσ sup

f∈G
Cj
1

2

uη(j)

∑
xi∈Su∩Cj

σif(xi) + Eσ sup

f∈G
Cj
2

2

uη(j)

∑
xi∈Su∩Cj

σif(xi)

⩽ KEσ sup
f∈F

2

uη(j)

∑
xi∈Su∩Cj

σif(xi)

Hence,

ESu∼Du
X
[Φρ(m

′
h(x,Yκ))

∣∣x ∈ Cj ] ⩽
1

uη(j)

∑
x∈Cj

Φρ(m
′
h(x,Yκ)) +

2K

ρ
R∗

uη(j)
(F) + 3

√
κ log 8K

δ

2uη(j)
,

(30)
where R∗

uη(j)
(F) = Eσ sup

f∈F

2
uη(j)

∑
xi∈Su∩Cj σif(xi). Similarly to (25) we have with probability

at least 1− δ/4 :

ESu∼Du
X
[Φρ(m

′
h(x, y,Y ′

κ) ∧ x ∈ Cj ] ⩽
uη(j)

u
ESu∼Du

X
[Φρ(m

′
h(x, y,Y ′

κ))
∣∣x ∈ Cj ]+√

2uη(j) log
8
δ

u2
+

7 log 8
δ

3(u− 1)
(31)



Thus, by (30) and (31), and the union bound we have with probability at least 1− δ/2:

Ex∼DX [Φρ(m
′
h(x,Yκ)) ∧ x ∈ Cj ] ⩽

1

u

∑
x∈Cj

Φρ(m
′
h(x,Yκ)) +

2K

ρ
R∗

u,j(F)+

5

√
κuη(j) log

8K
δ

2u2
+

7 log 8
δ

3(u− 1)
(32)

The statement of the Lemma follows from the inequalities (21), (28), (32), and the union bound. □

Theorem 3 Let H ⊆ RX×Y be a hypothesis set where Y = {1, . . . ,K}, and let Sℓ = ((xi, yi))
n
i=1

and Su = (xi)
n+u
i=n+1 be two sets of labeled and unlabeled training data, drawn i.i.d. respectively

according to a probability distribution over X × Y and a marginal distribution DX . Fix ρ > 0 and
κ ∈ {1, . . . ,K}, and consider a clustering algorithm A that obeys the bounded difference property
with constant L and is stable. If the κ-uniformly bounded clusters found in ΠSu are such that the
confident level η satisfies η ≤ ∆n(ASu ,A⋆, Sℓ), then for any 1 > δ > 0 and all h ∈ H found by
the PMS2L algorithm using ASu , the following multi-class classification generalization error bound
holds with probability at least 1− δ :

R(h)≤R̂ρ(h)+
L

u
+
2K

ρ
(R∗

u(FH)+Rn(FH))+
2κ

ρ
R∗

n(FH)+
7G log 14G

δ

3s∗
+

√
log 14

δ

t∗
+9

√
log 14KG

δ

v∗
,

where 1
s∗

.
=
(

2
n−1 + 1

u−1

)
, 1
t∗

.
= L2

u + 1
n ,

1
v∗

.
=

Gκuη

2u2 +
Gκnη+K(n−nη)

2n2 , nη = |Sℓ ∩ Cκ(η)| and
uη = |Su ∩ Cκ(η)|.

Proof. Let ΠSu = {C1, . . . , CG} be a set of disjoint clusters found by ASu . We decompose the
risk of a classifier by considering the two exclusive cases whether the misclassification error occurs
inside or outside the set of η-confident clusters :

R(h) = E(x,y)∼D[µh(x) ̸= y] =
∑

Cj∈Cκ(η)

E(x,y)∼D[µh(x) ̸= y ∧ x ∈ Cj ] +

∑
Cj ̸∈Cκ(η)

E(x,y)∼D[µh(x) ̸= y ∧ x ∈ Cj ]. (33)

First, we bound the risk over the set of confident clusters. For any cluster Cj in Cκ(η) and any
set of confident clusters Yκ(Cj) within it, from lemma 2 we have with probability at least 1− 4δ

7G :

R(h, Cj) = E(x,y)∼D[µh(x) ̸= y ∧ x ∈ Cj ] ⩽ R̂ρ(h, Cj) +
η

G
+

2κ

ρ
R∗

n,j(FH) +
2K

ρ
R∗

u,j(FH)

+ 5

√
κnη(j) log

14G
δ

2n2
+ 5

√
κuη(j) log

14G
δ

2u2
+

7 log 14G
δ

3(n− 1)
+

7 log 14G
δ

3(u− 1)
,



where nη(j) = |Sℓ∩Cj |, and R∗
n,j(F) = Eσ,Sℓ

sup
f∈FH

2
n

∣∣∣∣∑xi∈Sℓ∩Cj σif(xi)

∣∣∣∣, and uη(j) = |Su∩Cj |,

and R∗
u,j(F) = Eσ,Su sup

f∈FH

2
u

∣∣∣∣∑xi∈Su∩Cj σif(xi)

∣∣∣∣. Summing up over all clusters it comes

∑
Cj∈Cκ(η)

R(h, Cj) ≤
∑

Cj∈Cκ(η)

R̂ρ(h, Cj) + η +
2κ

ρ
R∗

n(FH) +
2K

ρ
R∗

u(FH)+

5
G∑

j=1

√
κnη(j) log

14G
δ

2n2
+ 5

G∑
j=1

√
κuη(j) log

14G
δ

2u2
+

7G log 14G
δ

3(n− 1)
+

7G log 14G
δ

3(u− 1)
.

By the Cauchy–Schwarz inequality (
∑G

i=1 aibi)
2 ⩽ (

∑G
i=1 a

2
i )(
∑G

i=1 b
2
i ), then by fixing bi =

1, ∀i ∈ {1, . . . , G}, we can bound the two last terms of the right hand side inequality, and get∑
Cj∈Cκ(η)

R(h, Cj) ≤
∑

Cj∈Cκ(η)

R̂ρ(h, Cj) + η +
2κ

ρ
R∗

n(FH) +
2K

ρ
R∗

u(FH)+ (34)

5

√
Gnηκ log

14KG
δ

2n2
+ 5

√
Guηκ log

14KG
δ

2u2
+

7G log 14G
δ

3(n− 1)
+

7G log 14G
δ

3(u− 1)
,

with n∗η =
∑

Cj∈Cκ(η) = n∗η(j) and u∗η =
∑

Cj∈Cκ(η) = u∗η(j).
From the inequality η ≤ ∆n(ASu ,A⋆, Sℓ) and Lemma 1, the following upper-bound holds with

probability at least 1− δ
7 :

η ≤ L

u
+ L

√
log 14

δ

2u
+

√
log 14

δ

2n

By the inequality ∀a > 0, b > 0; (a+ b)2 ⩽ 2(a2 + b2) it then comes :

η ≤ L

u
+

√(
L2

u
+

1

n

)
log

14

δ
(35)

Further the risk of classification outside the set of confident clusters can be decomposed as :

E(x,y)∼D[µh(x) ̸= y ∧ x ∈ Sℓ \ Cκ(η)] = E(x,y)∼D[µh(x) ̸= y | x ∈ Sℓ \ Cκ(η)]×
E(x,y)∼D[x ∈ Sℓ \ Cκ(η)]. (36)

Similarly to the previous development, and from the multi-class classification generalization bound
and the Data-dependent Bennett’s inequality (appendix A, theorems 11 and 7), the above risk is
upper-bounded with probability at least 1− 2 δ

7 by :

E(x,y)∼D[µh(x) ̸= y | x ∈ Sℓ \ Cκ(η)] ⩽
1

n

∑
(x,y)∈Sℓ\Cκ(η)

Φρ(mh(x, y)) +
2K

ρ
Rn(FH)+

5

√
K(n− nη) log

14K
δ

2n2
+

7 log 14
δ

3(n− 1)
(37)

The result then follows from the inequalities, ∀a > 0, b > 0, c > 0; (a+b+c)2 ⩽ 3(a2+b2+c2);
5
√
3 < 9; (33), (34), (35), (37) and the union-bound. □
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