
Language-independent Query Representation for IR Model
Parameter Estimation on Unlabeled Collections

Parantapa Goswami Massih-Reza Amini

Université Grenoble Alps,
CNRS-LIG/AMA
Grenoble, France

firstname.lastname@imag.fr

Eric Gaussier

ABSTRACT
We study here the problem of estimating the parameters of
standard IR models (as BM25 or language models) on new
collections without any relevance judgments, by using col-
lections with already available relevance judgements. We
propose different query representations that allow mapping
queries (with and without relevance judgments, from dif-
ferent collections, potentially in different languages) into a
common space. We then introduce a kernel regression ap-
proach to learn the parameters of standard IR models indi-
vidually for each query in the new, unlabeled collection. Our
experiments, conducted on standard English and Indian IR
collections, show that our approach can be used to efficiently
tune, query by query, standard IR models to new collections,
potentially written in different languages. In particular, the
versions of the standard IR models we obtain not only out-
perform the versions with default parameters, but can also
outperform the versions in which the parameter values have
been optimized globally over a set of queries with target
relevance judgements.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: Information
Search and Retrieval - Search process; I.2 [Artificial Intel-
ligence]: Learning - Parameter learning

General Terms
Algorithms, Experimentation, Theory

Keywords
IR Theory, Learning IR Parameters, Transfer learning

1. INTRODUCTION
In many situations, one has to deploy IR models on new

collections (on new domains or languages) from scratch. In

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICTIR’15 September 27–30, Northampton, MA, USA.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

such cases, developing relevance judgments so as to adapt
the retrieval models to the new collections considered is a
costly operation. An alternative is of course to simply rely
on default parameters of the IR models, hoping that the re-
sults obtained will be reasonable, i.e. not too far away from
the ones obtained by “adapting” the models (as we will see
in Section 4, default results are reasonable on several collec-
tions, however not on all of them). This “default” strategy
is the one traditionally adopted in IR evaluation campaigns
(as TREC or CLEF) when new collections and languages
are introduced. In fact, each time a collection changes sub-
stantially, e.g. through the introduction of new documents,
then the IR models that are employed, should be adapted
so as to follow the potential evolution of the collection.

Of course, one would like to perform such an adaptation at
a minimal cost, and, ideally, without resorting to new, spe-
cific relevance judgments, albeit using any relevance judg-
ments available on known, past collections. This is precisely
the problem we are investigating in this study, focusing on
learning the underlying parameter(s) of standard IR models
as BM25 [20], language models (LM) [18] and information-
based models (LGD) [7]. Our focus on these particular IR
models is motivated by the fact that these models are the
most widely used in different IR tasks (as ad hoc IR, struc-
tured IR or social IR for example) and serve as components
of learning to rank models deployed e.g. on web collections.
Thus, the fundamental problem we address can be formu-
lated as follows: How to infer the parameter values of stan-
dard IR models (BM25, LM, LGD) on collections without any
relevance judgments by using past labeled collections?

We will solve this problem, which relates to different re-
search fields, as model adaptation or transfer learning, by
mapping queries from different collections into common vec-
tor spaces in which regression functions can be efficiently
learned. Two key elements of our approach are: (a) The
method proposed allows to obtain parameter values for a
single query, so that IR models are optimized per query
on the new collection and (b) the representations used are
language-independent, and parameter values can be esti-
mated for new collections, in new languages, for any stan-
dard IR models.

The remainder of the paper is organized as follows. We
first discuss related work in Section 2. We then describe in
Section 3 the approach developed for learning the param-
eter(s) of standard IR models on collections with no rel-
evance judgments, using known collections with relevance
judgments. We then illustrate several aspects of the method

we propose in Section 4 on several collections, prior to con-
clude in Section 5.

2. RELATED WORK
IR models are generally defined with free parameters, as

the parameters b and k1, k3 for BM25 [19], the Dirichlet
smoothing coefficient µ for language models with Dirichlet
prior [11] and the c parameter for LGD [7]. These parameters
are query and collection dependent and hence their tuning
is unavoidable to achieve good performance. The necessity
of empirical tuning of the parameters of traditional models
has been advocated in different studies, as in [26]. In the
case where the relevance judgments exist, the optimal val-
ues of these free parameters are generally found by testing
different parameter values from a predefined set of discrete
values for each parameter on a set of queries with associated
relevance judgments, and then selecting the parameter val-
ues that lead to the best performance with respect to the
evaluation measure considered. This greedy search has been
found to be competitive compared to simple learning strate-
gies that optimize some differentiable IR measures [23]. This
said, creating new test collections, or manually assigning rel-
evance judgments for even a small set of queries, is a tedious
task [3].

Other studies directly considered the problem of unsuper-
vised parameter estimation [26, 22]. In [26], an automated
leave-one-out likelihood method to estimate the Dirichlet
prior smoothing parameter µ on unlabeled collection is pro-
posed; the study in [22] does not aim at estimating standard
IR model parameters but rather focuses on pseudo-relevance
feedback and makes use of a mixture model with a regular-
ized expectation maximization method to estimate the feed-
back parameter. If these methods have been shown to work
well on several collections, they were however developed un-
der the language model framework with a probabilistic view
over the generation of words, and cannot be (at least di-
rectly) applied to IR models outside the language model
family. Some studies also focus on unlabeled collections [21,
25], but with a different, evaluation-oriented goal, namely
the one of ranking different IR models. The assumptions
and methods used in these studies radically differ from ours.

In between supervised methods, making use of relevance
judgements on the collection queried, and unsupervised meth-
ods, that do not rely on such relevance judgements, lie meth-
ods (often referred to as transfer or cross-domain learning)
that aim at exploiting past relevance judgements, available
on some source collections, to learn models on unlabeled,
target collections. Many efforts have indeed already been
made to conceive and develop different collections through
existing competitions like TREC, and one can wonder whether
such annotated collections can be used for unannotated ones.

Several innovative studies have adapted cross-domain ap-
proaches to the IR learning to rank framework [5, 4, 8, 9].
While some of them made use of labeled queries in the source
and a small set of labeled queries in the target to learn a
ranking function [4], the others considered that only the
source collection contains labeled information, while queries
in the target collection have no associated relevance judg-
ments. In [8, 2], the transfer learning is done by weighting
documents in the source collection using unlabeled queries
and documents from the target dataset. More precisely, a
classifier is first learned aiming at discriminating source and
target documents or queries on the basis of standard fea-

tures similar to the ones used in learning to rank for IR. The
score of the classifier on each source (query,document) pair
is then used as an indicator of the proximity of this pair to
the target collection. A ranking function is then learned on
the source collection, with (query,document) pairs weighted
according to their proximity to the target collection: the
closer a pair is to the target collection, the more importance
it will have in the learning process. This approach has been
shown to work in the uncommon case where the source and
target collections are close to each other. However, when
the two collections are far away, then the model learned is
not appropriate. To address this problem, [9] proposed a
transfer technique approach that relies on relative relevance
judgement pairs induced on the target collection from a set
of source queries.

Our approach differs from these ones in that we are focus-
ing on learning the parameter values of standard IR models,
whereas default values of these models are used in the above
studies. Standard IR models are used in many IR tasks and
any procedure that can improve their performance on new,
unlabeled collections will be beneficial to the IR commu-
nity. Our approach also differs from the ones proposed in
[26] and [22] (discussed above) in that we are proposing a so-
lution that can be used for any standard IR model, and not
only for the language model family. The representation we
are using however bears some similarity with the one used
in [26] as they both use query representations based on word
frequency distributions over the collections considered (see
Section 3). We are however using a richer summary of these
distributions through the use of their three first moments.
Similar to what is done in [22, 14], we are learning parameter
values per query (different target queries may use different
parameter values), and are relying, as [14], on a regression
framework to do so. If this latter study is close in spirit
to ours, it also has some significant differences. In partic-
ular, we consider here the standard ad hoc IR setting and
IR models from different families, whereas [14] focuses on
pseudo-relevance feedback for relevance models. Because of
this difference, we rely on different features and query repre-
sentations and, from them, on different regression functions
(our query representation calls for kernel regression methods
whereas standard regression functions are used in [14]).

3. LEARNING IR MODEL PARAMETERS
ON UNLABELED COLLECTIONS

In the remainder, the unlabeled collection queried will be
referred to as the target collection whereas a collection avail-
able with relevance judgements will be referred to as the
source collection (possibly formed by merging several exist-
ing collections). We place ourselves here in a standard ad
hoc IR setting, only assuming that one has access to stan-
dard tools on the target, unlabeled collection (stop-word list
and stemming procedure). This corresponds to a standard,
general situation, but the methodology we propose can di-
rectly be applied if one has access to additional resources
and tools on both the source and target collections. Our
goal is to learn the parameters of standard IR models on
a target, unlabeled collection by transferring relevance in-
formation from a source collection, so to improve over the
performance obtained with parameters set to their default
values. Two questions that directly arise are:

1. What is the upper bound on the gain one can have

(a) BM25 (b) LM (c) LGD

Figure 1: Performance of IR models with default parameter values (�), parameters optimized within the
whole collection (�) and per query basis (�). The results are in terms of MAP on TREC-7,8, WT10G and GOV2

collections for (a) BM25, (b) LM, and (c) LGD IR models.

over the default strategy corresponding to setting the
parameters to their default values? In other words, is
it worth trying to improve over this strategy?

2. What are the upper bounds of methods estimating pa-
rameter values globally over all queries and of meth-
ods estimating those values query per query? In other
words, is it worth trying to find parameter estimates
individually for each query?

To answer these questions, we computed the mean aver-
age precision (MAP) of three standard IR models (BM25, the
Dirichlet language model LM and the log-logistic model LGD)
on four collections (TREC-7, TREC-8, WT10G and GOV2)1 with
three different settings:

(a) Using the default parameter values of each model;

(b) Selecting, in a given set of values (described in Ta-
ble 2), the parameter value that provides the highest
MAP on all target queries (this makes use of the rele-
vance judgements on the target collection). The asso-
ciated MAP corresponds to the upper bound of methods
aiming at finding the best value globally for all queries;

(c) Selecting, in the same given set of values and for each
query, the parameter value that provides the highest
average precision for the query (as before, this makes
use of the relevance judgements on the target collec-
tion). The mean of all the average precisions obtained
in this way yields a MAP value that corresponds to the
upper bound of methods aiming at finding the best
value individually per query.

The results obtained are displayed in Figure 1. As one
can note, the difference between default values and opti-
mized ones varies according to the model and the collection
considered. This difference is relatively small, in the range
[0, 2.5%] for all collections and models, when the optimiza-
tion is performed globally over all queries. It is more im-
portant when the optimization is performed query by query,
even though the improvement varies from one collection to
another: around 2 to 3% for all models on TREC-7,8, around
5 to 6% for all models on GOV2 and WT10G, the difference be-
ing however less marked for LGD. These results show firstly

1The collections are described in Section 4.

that it may not be possible to obtain significant improve-
ments over default values on all collections, as such values
yield results close to the best possible ones, and secondly
that higher gains can be expected by estimating the param-
eters per query.

Estimating parameter values per query is not necessarily
a difficult task. Indeed, from a source collection and a given
representation of queries, one can learn, using the relevance
judgements as in the setting (c) above, a regression function
that can then be used to associate parameter values to new
queries. However, in order to apply such a regression func-
tion on target queries, one needs to rely on a representation
of queries common to both the source and target collections.

3.1 Query representation
We consider a source collection S, composed of a set of

documents Ds, a set of n queries Qs = {qs1, . . . , qsn} and rel-
evance judgments for each query in Qs. Furthermore, we
consider a target collection T , composed of a set of docu-
ments Dt and a set of u queries Qt = {qt1, . . . , qtu} without
any relevance judgments. Each query q, in any collection, is
constituted by a set of terms q = {wq1, . . . , w

q
|q|}, correspond-

ing to the standard representation of queries. It is however
not possible to rely here on this simple query representation
as different collections use different vocabularies, potentially
from different languages.

Representation based on the tf distribution
In order to bypass the above problem, we extend the idea
of [26], who assumed that the distribution of query words
regarding relevant documents does not vary from source to
target collections, by considering that two queries are similar
if the words they contain have similar idf (inverse document
frequency) and tf (term frequency) distributions over their
collections. As the tf distributions of source and target
words are often high-dimensional and may differ in length
(as the collections contain different documents), we rely here
on a summary of these distributions obtained through the
estimates of their first (mean), second (standard deviation)
and third (skewness) moments, respectively denoted by µ(q),
σ(w) and sk(w) for a given word w. For a bounded distribu-
tion, like the term frequency distribution here, combination
of the moments of all orders (from 0 to ∞) uniquely deter-
mines the distribution. Thus the first three moments can be

considered to define a natural summary of the distribution
of the term frequency scores of the word in the collection.

We finally obtain the following representation of a query
in which each query word corresponds to a 4-dimensional
vector2: {

q = {wq
1, . . . ,w

q
|q|}

wq = (idf(wq), µ(wq), σ(wq), sk(wq))
(1)

where idf(w) denote the inverse document frequency of the
word w.

Learning extended representations with auto-encoders
We further investigate the possibility to enhance the pro-
posed tf and idf based representation (Eq. 1) using an Auto-
Encoder (AE). AEs [10] are a family of feed-forward neural
networks that are trained to reconstruct the input data by
performing two steps. In the first step, an input vector from
Rd is projected to a space Ra, called encoding, using non-
linear bijective functions. In the second step, the encoded
vector is projected into the original space of dimension d us-
ing again non-linear bijective functions. These models have
been found effective to extract text or image representations
as it has been shown that the neurons of the hidden layer are
able to detect generic concepts [13, 12]. The AE model that
we developed is trained using stochastic back-propagation
algorithm [1] over all the 4-dimensional vector representa-
tion of terms (d = 4) that are in the source and the target
collections3. After this step, any query q is then represented
as a set of term vectors:{

q = {wq
1, . . . ,w

q
|q|}

wq
j : vector found by the auto-encoder

(2)

From these mappings we finally learn the association be-
tween query representations and parameter values, as de-
scribed in the next section.

3.2 Learning the regression function
For each query in the source collection, one can obtain,

as mentioned before, the optimal value of the parameter of
each of the standard models BM25, LM and LGD. The vector
collecting these optimal values for each query in Qs will de-
noted by csopt = (cqs1 , . . . , cqsn)>, where > corresponds to the
transpose operator. Using the association between queries
in Qs and csopt and relying on a common vector space for
queries, one can learn a regression function that maps any
query in Qt to a parameter value. Figure 2 illustrates this
procedure.

In order to use regression methods, one first needs to de-
fine a common vector space for queries. We do so by intro-
ducing kernels that directly operate on the representations
defined above.

Simple PDS kernels
Starting from the representations of queries defined above
(q = {wq

1, . . . , wq
|q|}, with wq obtained either through the

idf and tf distribution or from an auto-encoder), we first

2This corresponds to two additional dimensions wrt the idf
and tf measures traditionally considered for query words.
3Note that the vectors of terms, as defined in equation 1, do
not involve the knowledge of relevance judgments.

Figure 2: Each target query is mapped in the com-
mon vector space and an associated parameter of the
IR model is predicted using the learned association
model.

consider the following convolution kernel4:

κall(q, q
′) =

1

|q|
1

|q′|

|q|∑
i=1

|q′|∑
j=1

〈
wq
i ,w

q′

j

〉
(3)

Exploiting twice the bi-linearity of the dot product, one has:

κall(q, q
′) =

1

|q|
1

|q′|

〈 |q|∑
i=1

wq
i ,

|q′|∑
j=1

wq′

j

〉
=

〈 |q|∑
i=1

wq
i

|q| ,
|q′|∑
j=1

wq′

j

|q′|

〉
The mapping φ associated with the above kernel takes the
form:

φ(q) =

|q|∑
i=1

wq
i

|q| (4)

φ thus corresponds to the average of the vectors of the words
present in q and κall amounts to the dot product between
the average word vectors of each query:

κall(q, q
′) =

〈
φ(q),φ(q′)

〉
(5)

From the form above, one can further define new kernels,
by substituting the dot product in equation (5) by any valid
PDS kernel. We consider here homogeneous polynomial ker-
nels and Gaussian kernels, widely used in text processing,
leading to:

κpoly-δ(q, q
′) = (〈φ(q),φ(q′)〉)δ

κgau-σ(q, q′) = exp(−||φ(q)− φ(q′)||22
2σ2

)

where δ corresponds to the degree of the polynomial kernel
and σ to the standard deviation of the Gaussian kernel.

These different kernels can be used with different kernel
regression methods. In this study, we rely on kernel Support
Vector Regression (kernel SVR) [24] as this method has been
shown to perform well in practice.

4The subscript “all” in κall denotes the fact that all pairs of
words, from the two queries, are compared.

Kernel regression
Let κ denote any of the above-defined kernels and let K be
the associated Gram (or kernel) matrix (Ki,j = κ(qsi , q

s
j), 1 ≤

i, j ≤ n). From the training set {(qsi , cqsi), 1 ≤ i ≤ n}, the
goal of kernel SVR is to learn a regression function in the
kernel-induced feature space (potentially of infinite dimen-
sion) in order to associate to any new query qt a parameter
value cqt . The optimization problem for kernel SVR takes
the following dual form (see for example [16]):

KSVR-opt:

max
α,α′
−ε(α′ + α)>1 + (α′ −α)>csopt −

1

2
(α′ −α)>K(α′ −α)

s. t. 0 ≤ αi, α′i ≤ C(1 ≤ i ≤ n), (α′ −α)>1 = 0

where 1 ∈ Rn is a vector containing only 1s and C and
ε are hyper-parameters usually set through cross-validation
(C serves as a regularization parameter and ε controls the
accuracy with which errors are measured). α,α′ ∈ Rn are
the parameters to be learned and are such that either αi or
α′i is non null (this happens if qsi is a support vector), or
they are both null (if qsi is not a support vector).

The above optimization problem is a convex quadratic
programming problem that can be solved by any convex QP
solver. The value predicted for a new query qt in the target
collection is obtained by:

cqt =

n∑
i=1

(α′i − αi)κ(qsi , q
t) + bi (6)

the offset bl being defined for any support vector qsl by:

bl =

n∑
i=1

(αi − α′i)κ(qsi , q
s
l) + cqs

l
+ ε (7)

The overall process for predicting the parameter value of
standard IR models on new, unlabeled collections can thus
be summarized as follows. For each free parameter of the

standard IR model under consideration:

1. Training step: Compute csopt inQs and solve the KSVR-
opt problem above with any convex QP solver;

2. Prediction: For each query of the target collection qt,
compute cqt through equations (6) and (7).

4. EXPERIMENTS
We present in this section experiments aimed at evaluating

the validity of the approach described before.

4.1 Collections
We perform experiments on nine IR collections: one from

CLEF5, six from TREC6 and two non-English collections from
FIRE7 containing Hindi and Bengali documents and queries.
Basic statistics on these collections are provided in Table 1.
We appended TREC-9 and TREC-10 Web tracks to experiment
with WT10G, and TREC-2004 and TREC-2005 Terabyte tracks
for experimenting with GOV2. Experiments are performed
on the Terrier IR platform v3.5 (terrier.org) [17], and as
for WEB oriented ad-hoc IR, we only considered the title of
queries and dropped their descriptions. The preprocessing

5www.clef-campaign.org
6trec.nist.gov
7www.isical.ac.in/~clia/

Collection N lavg Index size #queries

GOV2 25,177,217 646 19.6 GB 100
WT10G 1,692,096 398 1.3 GB 100
FIRE-BN 500,122 245 498.6 MB 50
TREC-3 741,856 261 427.7 MB 50
TREC-4 567,529 323 379.0 MB 50
TREC-5 524,929 339 378.0 MB 50
TREC-6,7,8 528,155 296 373.0 MB 50
FIRE-HN 331,599 178 225.5 MB 50
CLEF-3 169,477 301 126.2 MB 60

Table 1: Statistics of various collections used in our
experiments, sorted by size.

steps in creating an index include stemming using Porter
stemmer and removing stop-words using the stop-word list
provided by Terrier. On FIRE collections, we used the stop-
word lists available at the corresponding website, but did
not use any stemmer.

In most of our experiments, we considered CLEF-3, TREC-
3,4,5,6 as source collections, and used TREC-7,8, WT10G

and GOV2 for testing. In order to see how the projection in
the query space is dependent to the languages of the source
and target collections, we also tested our strategy by learn-
ing the regression model on English collections WT10G, GOV2
and predicting model parameters on both FIRE collections,
as well as the other way around by learning the regression
model on FIRE collections and predicting model parameters
on WT10G and GOV2. Results are evaluated using the mean
average precision, MAP, and precision at 10 documents, P@10
(relevance judgments on the target collections are just used
for evaluating the models). As MAP is the measure retained
in our experiments to construct csopt it is the one we privi-
lege in our discussions (other measures, as P@10 or NDCG
could of course be used to construct csopt and estimate model
parameters) whereas the P@10 is given as a illustrator of the
behavior of the methods. A Wilcoxon statistical test, with a
p-value of p = 0.05, is used to assess whether the difference,
in terms of MAP, between two methods is significant or not.

4.2 Experimental setup
We used three different, widely used, IR ranking models,

namely BM25, the language model with Dirichlet smoothing
(LM), and the log-logistic information-based model LGD from
the Divergence from Randomness family, and compared the
performance of these models with their default values (b =
0.75 for BM25, µ = 2500.0 for LM and c = 1.0 for LGD) against
the values predicted by the proposed regression approach on
target collections. In order to better evaluate the effect of
parameter learning on each single free-parameter alone, we
just considered the parameter b of BM25 and kept its two
other parameters fixed to their default values (k1 = 1.2 and
k2 = 8.0) in all of our experiments8.

Finally, the number of neurons in the hidden layer of the
auto-encoder was fixed by cross-validation on the source col-
lections by considering numbers varying from 5 to 20. In all
of our experiments, we used a server with an intel Xenon
1.8HGz processor and 16GB of RAM. The training time for
learning the representations on this machine, with a maxi-
mum number of iterations fixed to 60 000 000, was less than

8The codes we used can be found on http://ama.liglab.
fr/resourcestools/ir-parameter-learning/

TREC-7 TREC-8 WT10G GOV2

MAP P@10 MAP P@10 MAP P@10 MAP P@10

BM25

def 18.28↓ 41.80 24.09↓ 47.40 18.42↓ 29.10 27.39↓ 53.84

κall-SVR
? 19.03 43.01 24.95 47.20 20.52 30.90 30.31 58.79
† 19.05 43.20 24.92 46.60 20.52 31.10 30.09 58.89

LM

def 18.63↓ 39.20 24.01↓ 43.20 20.40↓ 29.30 27.98↓ 54.45
loo [26] 19.06 43.40 25.48 45.40 21.24 30.90 28.46↓ 53.64

κall-SVR
? 19.14 41.20 24.73↓ 44.80 21.02 30.10 29.44 55.76
† 19.16 41.40 24.76↓ 45.00 21.06 30.80 29.56 54.85

LGD

def 18.82 42.80 25.47 47.40 19.49↓ 28.70 28.76↓ 54.14

κall-SVR
? 19.00 44.20 25.64 46.60 20.02 29.10 29.62 56.46
† 18.99 43.80 25.60 46.40 19.94 29.11 29.49 56.26

Table 3: Comparison of IR models with parameters set to their default values (def) against the predicted
parameter values obtained with the leave-one-out strategy [26] (loo) for LM, and the proposed κall-SVR approach
for all models in terms of MAP and P@10 (in %). For κall-SVR, results are presented when terms are coded as
in equation 1 (in ?) or equation 2 (in †). The regressor is trained to optimize the average precision of each
query on the source collection. For MAP, best results are shown in bold and ↓ indicates that the result is worse
than the best one according to a Wilcoxon rank sum test with p < .05.

TREC-7 TREC-8 WT10G GOV2

MAP P@10 MAP P@10 MAP P@10 MAP P@10

BM25

κall 19.03 43.01 24.95 47.20 20.52 30.90 30.31 58.79
κpoly-2 18.98 42.80 24.89 46.60 20.50 30.80 29.93 58.48

κpoly-3 18.97 42.80 24.89 46.80 20.50 30.80 29.94 58.38

κpoly-4 18.97 42.80 24.90 46.80 20.49 31.00 29.94 58.48

κgau-10 19.01 43.00 24.91 47.00 20.54 31.10 29.99 58.18
κgau-50 19.00 43.00 24.91 46.80 20.58 31.20 29.99 58.18
κgau-100 19.00 43.00 24.92 46.80 20.59 31.20 29.99 58.18

Table 4: Comparison of different kernels in SVR in terms of MAP and P@10 on TREC-7,8, WT10G and GOV2 for BM25.
The different kernels used are (a) kernel κall, (b) polynomial kernels with δ = 2, δ = 3 and δ = 4 (κpoly-δ) and

(c) Gaussian kernels with σ = 10.0, σ = 50.0, σ = 70.0 and σ = 100.0 (κgau-σ).

b (BM25)
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0,
1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0

µ (LM)
10, 25, 50, 75, 100, 200, 300, 400, 500, 600,
700, 800, 900, 1000, 1500, 2000, 2500, 3000,
4000, 5000, 10000

c (LGD)
0.1, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5,
5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 20.0

Table 2: Set of values considered to find the opti-
mal parameter values on the source collection of the
different IR models.

10 minutes.
The vectors csopt of optimized parameter values on the

source collection are constructed by selecting, for each source
query and IR model, the value that provides the highest av-
erage precision. Table 2 gives the different values considered
for each model parameter. As kernel SVR (κall-SVR), we

used the LIBSVM9 implementation of ε-SVR, by fixing ε to
0.1, the hyper-parameter C is found by cross-validation on
the training set. Each query q here is represented by the
vector φ(q) given in equation (4).

4.3 Experimental results
In this section, we first assess whether the method we

propose improves over the one based on default parameter

9http://www.csie.ntu.edu.tw/~cjlin/libsvm/

values. We further compare our approach to the two upper
bounds introduced in Section 3, prior to illustrate its use on
collections written in different languages. Lastly, we investi-
gate the behavior of the method with respect to the number
of queries used for training, and its execution time.

4.3.1 Learned values vs default ones
We first evaluate the proposed transfer approach for pa-

rameter tuning by comparing the performance of different IR
models (a) with their default parameter values, denoted by
def, and (b) with their parameter values estimated by the
leave-one-out (loo) strategy [26] (for the LM model only),
against SVR based on the simple kernel κall (see Section 3),
denoted by κall-SVR, (for all IR models). For the latter, we
considered both term representations based on the tf distri-
butions (Eq. 1) and those learned with the auto-encoding
model (Eq. 2). Table 3 summarizes these results.

We first note that the performance of IR models with their
default values over different collections are in line with those
reported in studies which also considered query titles [6, 15].
Further, the proposed method yields MAP results significantly
higher according to a Wilcoxon rank sum test with p < .05
than the ones obtained with the default values on all models
and collections except for LGD on TREC-7,8, for which there
is no significant difference between the two. Further, con-
sidering the LM model, we see that both κall-SVR and loo

[26] behave the same across different collections : the perfor-
mance of LM with parameters found by loo are significantly

FIRE-HN FIRE-BN

MAP P@10 MAP P@10

BM25

def 29.46↓ 45.40 14.09↓ 24.80

κall-SVR
? 30.29 47.80 15.32 26.80
† 30.33 48.20 15.35 27.20

LM

def 26.82↓ 46.40 15.35 25.20

κall-SVR
? 28.39 47.40 15.76 26.40
† 28.03 48.20 15.75 26.00

LGD

def 30.92 46.40 15.67 28.40

κall-SVR
? 30.78 48.80 15.66 28.20
† 30.67 49.00 15.64 27.80

(a)

WT10G GOV2

MAP P@10 MAP P@10

18.42↓ 29.10 27.39↓ 53.84
20.75 32.50 30.17 58.08
20.75 32.50 30.10 58.48

20.40↓ 29.30 27.98↓ 55.45
21.05 30.60 29.33 55.15
21.05 30.50 29.33 54.85

19.49 28.70 28.76↓ 54.14
19.85 30.40 29.05 54.55
19.81 30.30 28.88 56.87

(b)

Table 5: MAP and P@10 measures (in %) of IR models with their default parameters (def) and predicted
ones using the κall-SVR strategy on non-English FIRE target collections when using WT10G and GOV2 as source
collections (a), and on WT10G and GOV2 target collections when using non-English FIRE as source collections (b).
For κall-SVR, results are presented when terms are coded as in equation 1 (in ?) or equation 2 (in †). The
regressor is trained to optimize the average precision of each query on the source collection. For MAP, best
results are shown in bold and a result with ↓ is significantly worse than the best one according to a Wilcoxon
rank sum test with p < .05.

better on TREC-8 while they are significantly better with pa-
rameters found by κall-SVR on GOV2. As both approaches
model the distribution of terms, these results confirm that
query terms are distributed likely the same over relevant
documents on source and target collections. The difference
is however that loo can only be applied to probabilistic IR
models using maximum likelihood estimates while the distri-
bution of terms with the κall-SVR strategy is coded in their
vector representations allowing the approach to tune the pa-
rameters of more general IR models. Moreover, different
term encodings we employed (Eq. 1 and Eq. 2) do not affect
the performance of κall-SVR as the predicted parameters for
different IR models with these two settings are slightly the
same over different collections. These results suggest that
the features space induced by κall-SVR captures the main
information of word distributions by just using the initial
word features.

As conjectured in Section 3, the difference between the
default values and the approach proposed varies from one
collection to the other, and from one model to the other.
Indeed, as mentioned before, the difference is not significant
for LGD on TREC-7 and TREC-8, which corresponds to two
smallest differences between the default values and the upper
bounds displayed in Figure 1. There is in this case little
room for improvement over the default values.

We also compare the method proposed with the different
kernels introduced in Section 3: κall, κpoly−δ and κgau-σ
with different values for the parameters δ and σ. Table 4
shows those results in terms of MAP and P@10 for BM2510. As
one can note, the different kernels yield very similar results,
without any significant difference between them. This is not
really surprising, but still needed experimental confirmation,
as the space in which κall operates is based on (Eq. 1) in
which linear kernels are likely to behave well; κall amounts
to a dot product in this space, and the extra dimensions
brought by the polynomial and Gaussian kernels are of no
use here. We thus focus on κall in the remainder of this
study.

10For sake of space, we did not report the same kind of results
obtained with LM and LGD models.

4.3.2 Learning from a source dataset of different lan-
guage than the unlabeled target collection

We investigate here whether κall-SVR behaves well when
the source and target collections considered are written in
different languages. To this end, we performed two kind of
experiments:

1. We first trained κall-SVR on WT10G and GOV2 collections
and tested it on non-English (Hindi and Bengali) FIRE
collections;

2. We then performed the reciprocal experiment by train-
ing κall-SVR on both FIRE collections and testing on
WT10G and GOV2 collections.

MAP and P@10 results are respectively reported in Table 5.
Except for LGD on FIRE and WT10G collections, one can note
that in all other cases, IR models with their predicted free-
parameters perform significantly better than with their de-
fault values. Furthermore, one can note note that the MAP

measures of all IR models for the collections WT10G and GOV2

are similar to the ones reported in Table 3. The representa-
tion of queries is based on tf moments of query words across
a given collection, which allows one to use collections in dif-
ferent languages to learn the regressor, as illustrated in this
experiment.

4.3.3 Learned values vs optimized ones
We now compare the results obtained by the method de-

veloped in this study and the ones corresponding to two
”ideal” cases. The first ideal case corresponds to the sce-
nario in which some target queries (50% in our experiment)
are associated with relevance judgements and are used to es-
timate the parameters of each IR model while the remaining
(50%) queries are used for testing. The second ideal case cor-
responds to the upper bounds already discussed in Section 3
where all the relevance judgements on the target collections
are used to optimize the parameters either globally for all
queries or query by query.

In the first case, we performed 10 random splits of the
target queries, using 50% for training and 50% for testing,
and report the average and variance obtained over the 10

TREC-7 TREC-8 WT10G GOV2

MAP P@10 MAP P@10 MAP P@10 MAP P@10

BM25
10splitmean 18.20↓ 41.92 24.53 45.52 19.61↓ 30.94 30.54 60.18
10splitvar 0.029 0.053 0.121 0.149 0.046 0.048 0.022 0.041
κall-SVR 19.03 43.01 24.95 47.20 20.52 30.90 30.31 58.79

LM
10splitmean 18.21↓ 42.24 25.45 45.36 19.67↓ 30.76 30.19 56.79
10splitvar 0.035 0.115 0.048 0.059 0.052 0.062 0.019 0.096
κall-SVR 19.14 41.20 24.73 44.80 21.02 30.10 29.44 55.76

LGD
10splitmean 18.03↓ 43.04 26.08 45.84 19.24↓ 29.08 30.26 59.01
10splitvar 0.039 0.167 0.048 0.079 0.053 0.037 0.023 0.088
κall-SVR 19.00 44.20 25.64 46.60 20.02 29.10 29.62 56.46

Table 6: Comparison of IR models with optimized parameter values using 10 random splits, against the
predicted parameter values using κall-SVR in terms of MAP and P@10 (in %). The regressor is trained to
optimize the average precision of each query on the source collection. For MAP, best results are shown in bold
and a result with ↓ is significantly worse than the best one according to a Wilcoxon rank sum test with p < .05.

(a) BM25 (b) LM (b) LGD

Figure 3: Comparison of IR models with parameters optimized per query basis (�) and optimized within the
whole collection (�) against the predicted parameter values using κall-SVR (�) and default parameter values
(�). The results are in terms of MAP on TREC-7,8, WT10G and GOV2 collections for (a) BM25 (b) LM and (c) LGD.

splits. The training simply consists in selecting the param-
eter value that yields the best MAP value on the training set.
We denote this method 10split. Table 6 displays the results
obtained in this setting, together with the ones obtained by
our approach. As one can note, the variance is always very
small, for all models and collections and for both MAP and
P@10, showing that the results remain stable even though
the query set considered for training changes. Another in-
teresting fact is that our approach, which does not make use
of any relevance judgements on the collection queried, is ei-
ther better or on a par with the 10split method which uses
25 (for TREC-7,8) or 50 (for WT10G and GOV2) queries with
their relevance judgements on each collection.

We finally compare our approach to the ideal situation
when the relevance judgements of all target queries are used.
Let us recall that this ideal situation provides both an upper
bound for the methods selecting a global parameter value
for the query set, and an upper bound for the methods se-
lecting a parameter value for each query. Figure 3, which
parallels Figure 1 of Section 3, shows the comparison of this
ideal situation with respect to our approach and the one re-
lying on default parameters. The first point that one can
note is that the results obtained by κall-SVR are very close
to the ones of the upper bound of the global optimization
methods (second and third bars on each set of histograms).
A Wilcoxon test revealed no significant difference between
them, whatever the collection, whatever the model. This

shows that our approach is at least as good as any method
optimizing IR parameters globally over all queries, whether
this method uses relevance judgements or not (the def and
10split strategies are such methods, outperformed, as we
have seen before, by our approach).

The second point to notice is that our approach is still 2 to
4% below the upper bound for methods providing optimal
parameters per query. This suggests that there is still room
for improvement over the approach considered in this study.

Finally, the predicted parameter values for all IR models
obtained with κall-SVR are in the ranges of those used to
learn the regressor (table 2) with the difference that these
predicted real-value parameters are not exactly the same
with the latter values.

4.3.4 The effect of the number of queries for training
We also analyze the behavior of the IR models for an in-

creasing number of queries in Qs for training the κall-SVR
model. Figure 4, illustrates this by showing the evolution
of MAP on WT10G and GOV2 with respect to the size of Qs.
To create Qs, we randomly selected queries from CLEF-3,
TREC-3,4,5,6 source collections. As expected all perfor-
mance curves increase monotonically with respect to the ad-
ditional training queries, though the increase reaches rapidly
a plateau and 150 queries seem sufficient on both collections
to learn the regressor at the basis of our method. The find-
ings of these results are (a) that a simple linear model is

(a) WT10G (b) GOV2

Figure 4: Evolution of MAP for BM25, LM and LGD on (a) WT10G and (b) GOV2 collections with respect to the size
of Qs. The queries constituting Qs are randomly sampled from the collections CLEF-3 and TREC-3,4,5,6.

sufficient to learn the association between the mapping of
queries in the vector space (Equation 4) and their desired
parameter values, and (b) that with a limited amount of
source labeled queries, the κall-SVR model is able to predict
accurate parameter values.

4.3.5 Time considerations
As our approach estimates a value for each query, it is im-

portant to measure the extra time needed, per query, for this
estimation. The word vectors defined by Eq. 1 can be com-
puted offline and stored in the traditional way IDF scores are
stored. This means that the query representation defined by
Eq. 4 can be computed with (almost) no extra burden. The
step that requires additional time with respect to standard
IR models is the one corresponding to the application of the
regression function on the target query, given by Eq. 6.

As one can note, this step involves the computation of a
limited number (at most n, the number of source queries)
of dot products between 4-dimensional vectors. One can
thus conjecture that the extra time for this step is limited.
Here extra time taken for every query is first measured and
then the average is calculated for all three models on TREC-

7,8, WT10G and GOV2. Table 7 gives this average extra time.
As one can note, this extra time is in the range 15 − 30
milliseconds, and can be easily decreased by parallelizing
the different dot products (by e.g. devoting one core to each
source query).

average extra time taken (milisec.)

TREC-7 TREC-8 WT10G GOV2

BM25 31.22 31.03 16.81 16.99
LM 30.89 31.80 17.23 16.94
LGD 31.51 31.41 16.98 17.46

Table 7: Average extra time taken per query (in mil-
liseconds) by κall-SVR over default parameter value
settings.

5. CONCLUSION
We have presented in this paper a new method to pre-

dict, on a query by query basis, the values of the param-
eters of standard IR models on new collections for which

no relevance judgments are available. To do so, we have
first introduced a new representation of queries as a set of
4-dimensional vectors, that we have then extended through
the use of auto-encoders. From these representations, we
have obtained collection and language independent vector
spaces, corresponding to feature spaces of PDS kernels be-
tween queries, in which we have learned regression functions.

Our experiments, conducted on standard collections, have
revealed several points:

1. The method we propose significantly outperforms, in
terms of MAP, the one using default parameter values
(def) on the collections and models considered (the
MAP is the measure optimized during training); it ei-
ther significantly outperforms or is on a par with the
method that uses half target queries with their rel-
evance judgements to find the best parameter value
over all queries (10split). These two methods (def
and 10split) are instances of ”global methods” which
make use of the same parameter value for all queries
of a given collection;

2. The number of source queries with relevance judge-
ments required by our method is in the range 150 for
all the collections and models we have considered. Fur-
thermore, the source queries used need not be from a
collection written in the same language as the one of
the collection queried;

3. The extra time required by our method for each query
lies in the range 15-30 milliseconds. This extra time
corresponds to the application of the regression func-
tion on the query representation;

4. Lastly, the method can be easily applied to any IR
standard model with few free parameters.

The proposed method, at its current stage, can predict the
value of a single parameter. We wish to investigate the ex-
tension of the approach to the case where more than one pa-
rameter value needs be estimated, for example BM25 (which
originally has three free parameters, b, k1, and k3). One
obvious way is to train separate regressors for each of the
parameters, but this works fine as long as there is no de-
pendency between the parameters. Alternatively, this could
be done, for example, by relying on a regression function

predicting a vector of values so as to take into account the
potential dependencies between the parameters considered.

Acknowledgment
This work was supported in part by the project AAP18
FUI Smart Support Center, and the LabEx PERSYVAL-
Lab ANR-11-LABX-0025.

6. REFERENCES
[1] L. Bottou. Stochastic gradient tricks. In G. Montavon,

G. B. Orr, and K.-R. Müller, editors, Neural Networks,
Tricks of the Trade, Reloaded, Lecture Notes in
Computer Science (LNCS 7700). Springer, 2012.

[2] P. Cai, W. Gao, A. Zhou, and K. Wong. Query
weighting for ranking model adaptation. In
Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics (ACL),
New York, USA, 2011. ACM.

[3] B. Carterette. Robust test collections for retrieval
evaluation. In Proceedings of the 30th Annual
International ACM SIGIR Conference on Research
and Development in Information Retrieval. ACM,
2007.

[4] D. Chen, Y. Xiong, J. Yan, G. Xue, G. Wang, and
Z. Chen. Knowledge transfer for cross domain learning
to rank. Information Retrieval, 13(3), June 2010.

[5] D. Chen, J. Yan, G. Wang, Y. Xiong, W. Fan, and
Z. Chen. Transrank: A novel algorithm for transfer of
rank learning. In IEEE International Conference on
Data Mining Workshops (ICDMW). IEEE Xplore,
2008.

[6] S. Clinchant and E. Gaussier. The BNB distribution
for text modeling. In Proceedings of the 30th European
Conference on Advances in Information Retrieval
(ECIR). Springer, 2008.

[7] S. Clinchant and E. Gaussier. Information-based
models for ad hoc ir. In Proceedings of the 33rd

Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval,
New York, USA, 2010. ACM.

[8] W. Gao, P. Cai, K. Wong, and A. Zhou. Learning to
rank only using training data from related domain. In
Proceedings of the 33rd Annual International ACM
SIGIR Conference on Research and Development in
Information Retrieval, New York, USA, 2010. ACM.

[9] P. Goswami, M. Amini, and E. Gaussier. Transferring
knowledge with source selection to learn ir functions
on unlabeled collections. In Proceedings of the 22nd

ACM International Conference on Information &
Knowledge Management (CIKM). ACM, 2013.

[10] G. E. Hinton and R. R. Salakhutdinov. Reducing the
dimensionality of data with neural networks. Science,
313(5786):504–507, 2006.

[11] F. Jelinek and R. Mercer. Interpolated estimation of
markov source parameters from sparse data. In
Proceedings of the Workshop on Pattern Recognition
in Practice. 1980.

[12] Q. V. Le and T. Mikolov. Distributed representations
of sentences and documents. In Proceedings of the 31th
International Conference on Machine Learning, 2014.

[13] Q. V. Le, M. Ranzato, R. Monga, M. Devin,
G. Corrado, K. Chen, J. Dean, and A. Y. Ng. Building
high-level features using large scale unsupervised
learning. In Proceedings of the 29th International
Conference on Machine Learning, 2012.

[14] Y. Lv and C. Zhai. Adaptive relevance feedback in
information retrieval. In Proceedings of the 18th ACM
Conference on Information and Knowledge
Management (CIKM), New York, USA, 2009. ACM.

[15] D. Metzler and O. Kurland. Experimental methods for
information retrieval. In Proceedings of the 35th
International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR ’12,
New York, NY, USA, 2012. ACM.

[16] M. Mohri, A. Rostamizadeh, and A. Talwalkar.
Foundations of Machine Learning. The MIT Press,
2012.

[17] I. Ounis, G. Amati, V. Plachouras, B. He,
C. Macdonald, and C. Lioma. Terrier: A high
performance and scalable information retrieval
platform. In Proceedings of ACM SIGIR’06 Workshop
on Open Source Information Retrieval (OSIR 2006),
New York, USA, 2006. ACM.

[18] J. Ponte and W. Croft. A language modeling approach
to information retrieval. In Proceedings of the 21st

Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval,
New York, USA, 1998. ACM.

[19] S. Robertson and S. Walker. Some simple effective
approximations to the 2-poisson model for
probabilistic weighted retrieval. In Proceedings of the
17th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval,
New York, USA, 1994. ACM.

[20] S. E. Robertson and H. Zaragoza. The probabilistic
relevance framework: Bm25 and beyond. Foundations
and Trends in Information Retrieval, 3(4), 2009.

[21] I. Soboroff, C. Nicholas, and P. Cahan. Ranking
retrieval systems without relevance judgments. In
Proceedings of the 24th Annual International ACM
SIGIR Conference on Research and Development in
Information Retrieval, 2001.

[22] T. Tao and C. Zhai. Regularized estimation of mixture
models for robust pseudo-relevance feedback. In
Proceedings of the 29th Annual International ACM
SIGIR Conference on Research and Development in
Information Retrieval, New York, USA, 2006. ACM.

[23] M. Taylor, H. Zaragoza, N. Craswell, S. Robertson,
and C. Burges. Optimisation methods for ranking
functions with multiple parameters. In Proceedings of
the 15th ACM International Conference on
Information and Knowledge Management, New York,
USA, 2006. ACM.

[24] V. Vapnik. The Nature of Statistical Learning Theory.
Springer Verlag, 2000.

[25] S. Wu and F. Crestani. Methods for ranking
information retrieval systems without relevance
judgments. In Proceedings of the 2003 ACM
Symposium on Applied Computing, 2003.

[26] C. Zhai and J. Lafferty. A study of smoothing
methods for language models applied to information
retrieval. ACM Transactions on Information Systems,

22(2):179–214, 2004.

