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Abstract

The well-known formal equivalence between non-negative matrix factorization and multinomial
mixture models extends in a fairly straightforward manner to tensors. Among interesting practical
implications of this equivalence, this suggests some principled ways to choose the number of factors in
the decomposition. We discuss and illustrate two methods to do this in Positive Tensor Factorization.

1 Introduction

Multi-way arrays are a convenient way to represent data with multiple dimensions, such as spatiotemporal,
dynamic or multilingual data [12, 8]. Basic techniques for decomposing multi-way arrays are higher-order
generalizations of Singular Value Decomposition (SVD), e.g. Tucker or PARAFAC/CANDECOMP [5].
When the data is positive and an additive decomposition is sought, it makes sense to constrain factors
to be positive, hence the development of Positive Tensor Factorization (PTF, [10, 12]), the higher-order
extension of Non-negative Matrix Factorization (NMF, [9, 7]).

The equivalence between NMF and Probabilistic Latent Semantic Analysis [3], extends in a fairly straight-
forward manner to provide a probabilistic view of PTF as a mixture of multinomials. In addition to
providing new insights into the way factors are estimated, normalized and compared, this equivalence also
suggests a natural approach to selecting the appropriate model structure, i.e. the number of factors in
the decomposition. Whereas in the context of PTF, this problem is often addressed by overspecifying the
model and “hoping” that unnecessary components will vanish, the probabilistic view provides a princi-
pled way to deal with this important issue. We will illustrate this on an artificial example with known
structure.

2 Probabilistic Tensor Factorization

In order to simplify notation, and without loss of generality, we focus on a third-order tensor X ∈ R
I×J×K .

A factorization of X is conveniently expressed using the Kruskal operator JA,B,CK, with A ∈ R
I×R,

B ∈ R
J×R, and C ∈ R

K×R, such that X = JA,B,CK means that xijk =
∑R

r=1
airbjrckr,∀i, j, k.

For a positive decomposition, A, B and C are positive: this ensures an additive decomposition of X

as a superposition of positive components. In the presence of noise, the factorization is approximate:
X ≈ JA,B,CK. The quality of the approximation may be measured by different loss functions such as
the L2 (quadratic) or a Kullback-Leibler inspired loss [12], which is:

KL(X, JA,B,CK) =
∑

ijk

xijk log
xijk

JA,B,CKijk

− xijk + JA,B,CKijk (1)

Assuming that the observations in X are (or may be transformed to) counts, let us model the probability
P (i, j, k) of having an observation in cell (i, j, k) as a mixture of R conditionally independent multinomials:
P (i, j, k) =

∑
r P (r)P (i|r)P (j|r)P (k|r). Defining the R-vector λ as λr = P (r), the I × R matrix A as

air = P (i|r), the J × R matrix B as bjr = P (j|r) and the K × R matrix C as ckr = P (k|r), the third



order tensor P such that pijk = P (i, j, k), has a positive tensor factorization P = Jλ;A,B,CK ≈ X/N .
Parameters θ = (λ,A,B,C) of the mixture of multinomials are typically estimated by maximizing the
likelihood over the data X, or equivalently the log-likelihood:

L(θ;X) =
∑

ijk

xijk logJλ;A,B,CKijk (2)

Notice the similarity with Eq. 1, which motivates the probabilistic view of positive tensor factorization:

Proposition 1 (Equivalence) Given a multi-way array of observations X, the mixture of multinomials

θ = (λ,A,B,C) that maximizes the likelihood over X is a minimum-KL Positive Tensor Factorization

of 1

N
X, and any Positive Tensor Factorization of X also yields a maximum likelihood solution θ̂ for P.

Idea of proof: Note that the equivalence of the KL-loss at minimum and the log-likelihood at maximum is
not enough as they are optimized over different constraints. However, it is fairly straightforward to show
that no PTF is better than the corresponding probabilistic model (the reverse is obvious).

This equivalence has a number of practical implications:

Normalized representation: The probabilistic model is invariant by permutation of the components,
as most mixture models, but it removes some of the invariance by rescaling/rotation by forcing factors to
be stochastic. In addition, keeping factors on comparable scales makes interpretation easier.

Parameter Estimation: The Expectation-Maximization (EM) algorithm provides a principled param-
eter estimation technique which guarantees minimization of the objective at each step. Multiplicative
updates for non-negative tensor factorization do not guarantee convergence unless appropriate scaling is
performed, whereas EM maintains scaling in one step. In addition, Deterministic Annealing helps stabilize
the EM solution.

Model Selection: The probabilistic view suggests a number of approaches for selecting the proper num-
ber of components in a constructive manner. By contrast, a common way to “select” the number of
components in the traditional factorization setting is to overestimate it and trust the parameter estima-
tion procedure with removing useless components by setting the appropriate parameters to zero.

Model selection in the context of PTF corresponds to selecting the right number of components. In
mixture models, a quick way to do that is to rely on information criteria [1, 11]. These augment the
(log)likelihood by a term penalizing larger models. Although the regularity assumptions for BIC/AIC
are known to be incorrect for mixtures of multinomials, they often yield a reasonable idea of the model
structure in practice. The simplest and most well-known are [1, 11]:

AIC = 2.L(θ̂;X) − 2.P and BIC = L(θ̂;X) −
P

2
× log(N) (3)

Two important issues here are the effective number of parameters P and the effective sample size N . In the
experiments below, the number of parameters is computed simply as P = R((I−1)+(J−1)+(K−1)+1)−1
for the 3D tensor and similarly for other dimensions. In situations such as text where factors are expected
to be very sparse, it may make sense to adopt a more realistic estimation of P that does not unduly
penalize large models. Similarly, note that the factorization is invariant by scaling of the data tensor X.
In order to take that into account, we use the number of cells and not the sum of counts as sample size,
ie N = IJK.

The second model selection strategy relies on a standard log-likelihood ratio test for nested models.
Mixtures of multinomials are naturally nested: if R1 < R2, the model with R1 components is a particular
case of the model with R2 components. In that setting, a typical way to test whether two nested models
are significantly different is to use a likelihood ratio test. Denoting the two models JAR1

,BR1
,CR1

K
and JAR2

,BR2
,CR2

K (with R1 and R2 components, respectively), the (log-)likelihood ratio statistic is
computed as:

LR = 2
∑

ijk

log xijk

JAR2
,BR2

,CR2
K

JAR1
,BR1

,CR1
K

= 2(L(θR2
;X) − L(θR1

;X)) (4)
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Figure 1: AIC and BIC for Tensors of increasing dimensions (2 to 5), rescaled so that the minimum is at
the same level. All suggest correctly 4 components as the right model size.

Under the null hypothesis of no difference between the two models, LR is approximately asymptotically
chi-square distributed, with a number of degrees of freedom, df , equal to the difference in the number of
parameters in the two models. In the three dimensional case, for example, df = (R2 −R1)(I +J +K −2).

This suggests the following model selection strategy: Starting from R = 1, a) Estimate model θ̂R with

R component; b) Estimate model θ̂R+1 with R + 1 components; c) Repeat previous step as long as

2(L(θ̂R+1)−L(θ̂R)) > χ2(1− α, (I + J + K − 2)). Notice that the number of degrees of freedom between
successive models is always the same as it corresponds to adding a single component, so we essentially
compare the increase in log-likelihood obtained from each new component to a fixed threshold χ2(1−α, df).

3 Experiments

Testing model selection is typically done at either side of a compromise: using artificial data on which
the “right” model structure is known, a slightly favorable situation, or using real data, which provides a
more realistic setting, but where the correct model structure is unknown. As an illustration, we use the
former: we generate several datasets of various dimensions and size, each using 4 factors/components.
Factors are overlapping “waves” over either 16 or 24 modalities. We obtain seven datasets: from 16 × 16
to 16 × 16 × 16 × 16 × 16 (1 million cells) and from 24 × 24 to 24 × 24 × 24 × 24 tensors.

On each of these 7 arrays, we computed the PTF with R = 2 to R = 8 components and computed the
BIC/AIC criteria and likelihood ratio at each stage. These were estimated using a deterministic annealing
variant of EM and multiple random restarts in order to diminish the influence of local minima of the loss
function. Figure 1 shows how BIC/AIC behave as the number of components is increased for the 2-to-
5-dimensional tensors with 16 modalities. In all cases, the minimum of the information criteria suggest
the correct model size of 4 factors. It is apparent that, as expected, BIC penalizes additional components
more than AIC. The rate of decrease or increase of the information criteria also varies depending on the
data size and dimensionality.

In order to obtain a threshold χ2(1−α, df) on the chi-squared statistic, we choose the traditional α = 0.05,
although other reasonable values of α yield essentially the same result. Depending on the size of the data,
and on the difference in degrees of freedom (second row of Table 3), this gives different thresholds, as
indicated in the third row of the table. In all cases we see that the observed log-likelihood ratio statistic
(lower part of the table) is above the threshold until we reach R = 4 factors, and below when we add
components beyond that. This again suggests (correctly) that the proper number of factors for these
example tensors is 4.
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Tensor16 Tensor24
Dim: 2 3 4 5 2 3 4

df: 31 46 61 76 47 70 93
χ2(.95, df): 44.99 62.83 80.23 97.35 64.00 90.53 116.51

(log-)likelihood ratio statistic:
R=2 425.54 6,017.19 26,183.20 81,081.00 945.60 19,242.30 91,841.00
R=3 220.38 2,287.32 18,567.00 111,373.00 459.92 7,025.04 79,887.10
R=4 192.94 2,253.85 18,182.91 128,055.70 440.54 6,721.70 78,848.32
R=5 15.54 22.67 36.70 49.10 23.81 36.96 42.27
R=6 16.09 19.45 31.39 44.20 19.47 28.65 36.68
R=7 4.27 21.60 25.87 33.50 9.67 32.65 42.36
R=8 10.01 15.98 35.52 42.00 16.72 28.16 54.43

Table 1: Log-likelihood ratio statistic and χ2 test. Dim: dataset dimension; df : degrees of freedom;
χ2(.95, df): test threshold. Values below threshold (bold) indicate that the new component is unnecessary.

Note again that these results were obtained on artificially generated data where the proper model structure
is known. The outcome is usually less clear-cut on a real dataset. However these results suggest that
these criteria, inspired by the probabilistic model, may at least give a useful indication of a suitable model
structure.

4 Conclusion

The probabilistic view of Positive Tensor Factorization is a straightforward extension of the 2D relationship
between NMF and PLSA. Nevertheless, it has some interesting implications in terms of normalizing or
estimating the factored representation. Using information criteria and likelihood ratio tests, we saw that
it is possible to accurately select the number of factors in a situation where the model is complete, ie,
there is a model instance that does generate the data. We hope that this relationship can be exploited to
further the understanding and help the use of positive tensor factorization.
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