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Abstract—Localization is the ability for a mobile robot to know
its position at all times. When the initial position is unknown,
the localization process has to manage several possible positions
that could correspond to the real one. The main drawback of
this technique is the cost of computational complexity that could
be high. In this paper, we present a new way to determine the
set of initial possible positions that is fast (less than 3s) and
enables to start the localization process with a small number
of possible positions. The consequence is that our localization
process determines the real position in a fast and robust way.
Experimental results show the benefits of the method.

Index Terms—mobile robots, localization, perception, pattern
recognition, information retrieval

I. INTRODUCTION

For the various applications considered by a mobile robot,
the capacity for the robot to locate itself, that is to say to
know at all times its position is essential. For instance, when
a mobile robot moves in its environment to perform a task
(ie, to reach a goal), it has to know that it is getting closer to
its goal and moreover, it should be able to know that it has
reached its final position.

Initial research on localization considered that the initial
position of the mobile robot in its environment was known.
In this case, the localization process has to track this position
while the robot is moving and perceiving its environment. This
approach is known as local localization or position tracking.
The most common choice to represent the position of the
mobile robot is an unimodal gaussian [11] that gives fast and
robust implementations for localization of a mobile robot in
its environment [5].

But in some cases, the initial position is unknown. Then,
the localization process has to track several positions while the
robot is moving in its environment. This approach is known
as global localization or multi hypothesis tracking1. In this
case, unimodal gaussian is not appropriate and [9] use a multi
gaussian hypothesis representation at the cost of increased
computational complexity. The most general representation
to solve global localization is to approximate the probability
distribution of the possible positions by a set of particles,
where each particle has two components: (i) a position and
(ii) a probability/score of this position [3]. [15] have obtained
very good results for global localization of a mobile robot in
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1A very complete review of localization techniques could be found in [12].

indoor environment using particles. Moreover, [7] has shown
that global localization is a generalization of local localization
starting with a huge set of particles, uniformly distributed over
the space of possible positions, at the beginning of the global
localization and reducing the size of this set as the robot gains
more and more confidence in its real position. For instance, [7]
started with a set of 40 000 particles to decrease this set to
less than 100 particles when the position has been found. The
main drawback of using a set of particles to approximate the
probabilty distribution over the possible positions is that the
cost of computational complexity is increased especially at the
beginning of the process where we have to deal with a huge
set of particles.

To deal with this problem of global localization, a simple
approach is to compare what the robot has perceived with what
it should perceive in each position in its environment, and
select the positions with the greatest number of similarities as
we did in [16]. But for global localization, this approach is
not real time either and could take several minutes because
we have several million positions to explore in a map. So
our idea is to design a method integrating some concepts of
information retrieval [13] to get the positions with the highest
similarity with the current observation in a few seconds.

In the next section, we present the mobile robot used
in this work. In section III, we formalize the localization
process and detail its implementation. Section IV is dedicated
to our implementation. We show some experimental results
in section V. We conclude and give some perspectives in
section VI.

II. EXPERIMENTAL PLATFORM

Our mobile robot named robair is a differential drive mobile
robot (see figure 1). This is a home made robot designed and
built in our fablab. It is made of flower pots: a large pot for
the bottom and a smaller one for the top. Its head is equipped
with LED strips. Its base is circular with 2 drive wheels and 2
idler wheels for stability (see figure 2). To control it, we can
send translation and rotation speed to its base. Each wheel is
equipped with encoders and we have designed an odometer
to estimate its motion. It is equipped with a laser scanner to
perceive its environment at a frequency of 25 Hz. The range of
the laser is of 5.5 meters and its field of view is of 240 degrees
with an angular resolution of 1/3 degree (see figure 3). So a
scan of the laser is composed of 724 values corresponding to
the 724 hits of the laser.



Fig. 1. Robair. The red circle at the bottom shows the position of the laser
scanner.

Fig. 2. Circular base of robair showing the 2 driven wheels and its position
(x, y, θ) in its environment.

Fig. 3. Range, field of view of the laser in white color and an acquisition in
blue color. The background is composed of a grid where each square has a
size of 1m x 1m.

Its position is defined by its pose (x, y) in a plane and its
orientation θ (see figure 2).

III. LOCALIZATION PROCESS

In this section, we detail the different aspects of the local-
ization process: notations, formalization and resolution of the
problem and initialization of localization.

A. Notations

The localization problem can be treated as a process of
taking inputs from measurements from motion sensors such
as odometry or inertial measurement which is denoted by U
and from sensor measurements including measurements from
perception sensors such as laser scanners or cameras which is
denoted by Z. It includes a static map M as well. The process
output is the estimated position of the robot X .

For positions which tend to change over time, we use
specific variables to indicate values of each state at a certain
time. For instance, xt indicates the position of the mobile robot
at time t. This allows to define the trajectory of the robot over
time:

X = x0:t = {x0, x1, ..., xt} (1)

As the robot moves, its state xt evolves, the motion sensors
allow to measure the control ut of its displacement and
the perception sensors allow to collect measurements of the
environment zt. In addition, we define the following set to
refer to data leading up to time t:

U = u1:t = {u1, u2, ..., ut} (2)
Z = z0:t = {z0, z1, ..., zt} (3)

B. Formalization and resolution of the localization problem

In the probabilistic form, the localization problem involves
estimating the probability distribution P (X|Z,U,M). Instead
of determining the whole trajectory of the robot X , in practice
we are usually only interested in determining the current
position of the robot xt: P (xt|z0:t, u1:t,M).

Fig. 4. Graphical model representation of a simple bayesian filtering. Gray
circles denotes observed states, clear circles denotes hidden states to be
estimated.

This probability distribution describes the posterior density
of the robot position at time t given the measurements up to
time t, the control inputs up to time t and the map. This pos-
terior density is also called Belief: Bel(xt). In general, since
data arrives over time, a recursive solution is desirable. The



graphical model in Fig. 4 explains the dependency structure
of variables in the localization problem.

Bayesian filtering (sometimes known as bayesian sequential
estimation) [4] is a widely accepted probabilistic framework
to solve the problem of estimating dynamic states of a
system evolving in time given sequential observations or
measurements about that system. The idea behind the bayesian
filtering is that it allows to use past and present measure-
ments in sequence to enhance the estimation of the actual
system state. Starting with an estimate for the distribution
P (xt−1|z0:t−1, u1:t−1,M) at time (t− 1), the joint posterior,
following a control ut and measurement zt, is estimated in 2
steps using a bayes filtering process:

P (xt|z0:t, u1:t,M)︸ ︷︷ ︸
posterior at t

∝ P (zt|xt)︸ ︷︷ ︸
update

∫
xt−1

P (xt|xt−1, ut)P (xt−1|z0:t−1, u1:t−1,M)︸ ︷︷ ︸
posterior at t−1︸ ︷︷ ︸

prediction

(4)

Fig. 5. Sequential bayesian filtering in 2 phases: prediction with motion
measurement ut + update with observation measurement zt

This algorithm can be interpreted as transformations over
distributions of probability. Using the state transition func-
tion P (xt|xt−1, ut) and the previously estimated proba-
bility P (xt−1|z0:t−1, u1:t−1,M), we obtain a distribution
P (xt|z0:t−1, u1:t,M) which is commonly called the predic-
tion step. Then introducing the new measure we update
the distribution with the likelihood P (zt|xt) to obtain the
desired result P (xt|z0:t, u1:t,M). The process is illustrated
in Fig. 5. It is clear that in order to compute the sequential
bayesian filter, definitions of the state transition function (or
dynamic model) P (xt|xt−1, ut) and the likelihood function
(or sensor/measurement model) P (zt|xt) are required.

C. Initialization of localization process: local localization
versus global localization

As mentioned in section I, when the initial position x0
is known, the belief Bel(x0) is then usually initialized by
a narrow Gaussian distribution centered around the initial
position. When it is unknown, Bel(x0) is initialized by a
uniform distribution over the space of all legal positions in
the map. In this particular case, it makes sense to perform an

initial observation z0, before starting the localization process,
to have a better distribution than a uniform distribution:

Bel(x0) = P (x0|z0) ∝ P (z0|x0) (5)

It is obvious that determining a model for P (z0|x0) that is
able to find the most probable positions is of key importance
for global localization. In next section, we detail how we
determine this model and what the benefits are for global
localization in terms of speed and robustness.

IV. IMPLEMENTATION OF GLOBAL LOCALIZATION
PROCESS

In this section, we detail our implementation. First of all,
we explain how we built a map of the environment and
how we pre-processed this map. In section IV-B, we describe
the initialization of global localization. The dynamic and
observation models are presented in section IV-C. Finally, we
detail the implementation of global localization with particles.

A. Building of map and preprocessing

Fig. 6. Occupancy grid map of a part of our lab. This map has a size of
about 25m x 20m.

1) Representation of the environment: The most common
representation for a map are occupancy grids or grid based
representations, that were first introduced by [6]. In this
representation, the environment is subdivided into a regular
array or a grid of rectangular cells. The resolution of the
environment representation directly depends on the size of the
cells. In addition to this discretization of space, a probabilistic
measure of occupancy is estimated for each cell of the grid
which indicates whether that cell is occupied by an obstacle
or not. For instance, in figure 6, cells with a low probability
of occupancy are white. The cells having a high probability
of occupancy are black. In light grey, we have the cells where



Fig. 7. 5 ray castings of the laser

the laser hasn’t taken any measurements, ie. cells for which
we have no information about their occupancy. The main
advantage of this representation is that this is a very low level
representation and as close as possible to the perception of
the laser, including the noise and drawbacks of this kind of
sensor.

We built an occupancy grid of the LIG. In this grid, the
discretization is of 5 centimers × 5 centimeters × 5 degres.
This discretization is in fact the discretization used to perform
global localization. This offline process has been done using
the gmapping module of ROS [1] and took about 1 hour. This
map will be used to perform global localization.

2) Preprocessing of the map: As mentioned in section I,
our idea is based on the comparison of what the robot has
perceived with what it should perceive in each position in
its environment. Then, with the grid map of the environment,
we need to compute for each position, what the robot should
perceive, ie. the value of the 724 hits of the laser scanner. To
perform this task, for each position and for each hit, we use
a simple ray casting technique [2] to compute the intersection
between a theoretical infinite hit in a given direction and the
first occupied cell in the map in this direction (see figure 7).
This pre-processing is done offline and took about 1 hour on
the grid map of our lab. The output of this process is a list
of about 3.5 million positions and for each position, a vector
of 724 hits corresponding to what the laser should perceive in
this particular position.

B. Initialization of global localization

In this section, we propose an algorithm, integrating some
concepts from information retrieval [13], making it possible
to obtain in a few seconds a list of the positions yielding the
best match between what the laser should perceive, and what
it is currently perceiving. This algorithm proceeds in 2 steps:
the first step is to find the poses (x, y) that best correspond
to the patterns extracted from the list of positions in the map
and the second step is to specify the orientation of the robot.
Before detailing these 2 steps, we explain how we extract some

patterns from the observation of the laser and how we represent
the list of 3.5 million positions as a two level index.

Fig. 8. Extracted patterns: the red circle shows the field of view of the laser
scanner. As we can see, the same patterns are globally extracted for both
orientations. In general, this fact allows us to predict x,y from patterns.

1) Extraction of patterns from a laser scan: In order to
abstract from the orientation, we will consider the sequences
delimited by the hits corresponding to an empty area (see
figure 8). As the field of view of the laser is limited to 240
degres, we consider two different positions for each pose (x,
y) one with θ = 0 and one with θ = 180 so as to cover all the
visible patterns in a pose (x, y).

Fig. 9. creation of indexes: on the left, the two level indexes to find the
pose(x, y) and on the right, the index to find the position(x, y, θ)

2) Creation of a two level index: To create a two level
index, for each possible position of the robot:



1) we extract all the patterns;
2) to create the index between hits and patterns, for each

pattern:
• if it has not been seen previously, we create some

links between each hit of the pattern and a new node
at the pattern level;

• else we increase the frequency of the corresponding
node at the pattern level;

3) when the first level of the index is completed, we
proceed in the same way to create the index between
the pattern level and the pose level.

This process is done offline and takes between 2 and 3 hours
to be performed. This process is illustrated on the left part of
figure 9.

3) Find the best poses (x, y): Using the two level index,
we find the best poses (x, y) in several steps:

1) We extract the different patterns from the scan of the
laser;

2) Using the hit-patterns index, a search for the N patterns
closest to each extracted pattern (simple counting of
common hits) is performed. To perform this search, for
each hit, we increase the frequency of each connected
pattern. This count enables us to quickly find the patterns
close to the 724 hits of the laser. The score of each close
pattern found is normalized by dividing by the maximum
score obtained;

3) Using the patterns-positions index, the search for the
N positions most associated with the patterns found by
the previous operation (simple summation of normalized
scores) is performed.

This process is very fast and takes less than 1 second.
4) Find the best position (x, y, θ): When we have the list of

the best poses (x, y), we proceed in several steps to determine
the most probable positions (x, y, θ):

1) Using the N best poses (x, y) found in the previous
phase, we build the list of all the corresponding positions
(x, y, θ);

2) We build ”on the fly” a new index linking hits and
positions (x, y, theta) and compute the idf weighting2

of each hit;
3) We search for the best positions (x, y, θ) by summing

the idf weightings of each hit. The idea is to give
more importance to the hits which are specific to a
position. The weight of a hit therefore corresponds to
the number of indexed positions divided by the number
of occurrences of this hit in all indexed positions. The
more frequent the hit, the lower its weight.

This process is very fast as well and takes between 1 and 2
seconds.

C. Dynamic model and observation model

When the first step of the global localization is performed
as described in the previous section, we have a set of possible

2inverse document frequency [13]

initial positions, robair will start to move in its environment
and each time it has traveled a predefined distance, we will
predict its position using a dynamic model. In a second step,
we will update its position using a sensor model. In this
section, we detail these 2 models that we have adapted from
our previous work [16].

Fig. 10. The probabilistic motion model P (xt |xt−1, ut) of the robot (left)
and its sampling version (right).

1) motion model P (xt |xt−1, ut): For the motion model,
we adopt the probabilistic velocity motion model similar to
some of our previous work [16]. The robot motion ut is
comprised of two components, the translational velocity vt
and the yaw rate ωt. Fig. 10 depicts the probability of being
at position xt given previous position xt−1 and control ut.
This distribution is obtained from the kinematic equations,
assuming that robot motion is noisy along its rotational and
translational components. A sampling version of the motion
model (Fig. 10 right) is used to generate all possible poses xt
given the previous pose xt−1 and the control ut.

Fig. 11. Illustration of the sensor model P (zt |xt,M) for a given position of
the robot. The robot is located at the origin of the arrow and the arrow shows
its orientation. Green points are hits of the laser that match to an occupied
cell and red one are points that match to an empty cell.

2) sensor model P (zt |xt,M): For the sensor model
P (zt |xt,M), the mixture beam-based model is widely used
in the literature [8], [10]. However, the model comes at the
expense of high computation since it requires a ray casting
operation for each beam. This can be a limitation for real
time application if we want to estimate a large amount of
measurements at the same time. To avoid ray casting, we
propose an alternative model that only considers end-points



of the beams. Because it is likely that a beam hits an obstacle
at its end-point, we focus only on occupied cells in the grid
map.

First, from the robot position xt, each individual measure-
ment zkt is projected into the coordinate space of the map. If
the grid cell that the projected end-point falls into is occupied,
we increase the score. The final voted score represents the
likelihood of the measurement. Figure 11 shows an example
of the score obtained for a given position in the environment.

The proposed method is just an approximation to the
measurement model because it does not take into account
visibility constraints, but experimental evidence shows that
it works well in practice. Furthermore, with a complexity of
O(K), the computation can be done rapidly.

D. Particle filter and resampling

According to our initialization phase, we decide to manage
only 100 particles. After each prediction and update of our es-
timation, we proceed to a resampling of the particles as in [3].
Our goal is to progressively shift from a global localization
to a local localization. So, performing resampling at each step
will focus the localization process only on particles that have
a high probability to correspond to the real position of the
mobile robot. Moreover, with a very small number of particles,
the localization process is able to work in less than 0.5s.

V. EXPERIMENTAL RESULTS

In this section, we firstly present some quantitative results
about the initialization phase and secondly we describe the
complete localization process on some examples.

A. Initial localization

ranking 1 5 10 30 50 100
pose (x, y) 9.35 33.09 40.29 58.27 68.35 79.86

position (x, y, o) 37.41 54.68 58.27 66.91 69.78 72.66
TABLE I

PERCENTAGE OF CASES IN WHICH THE REAL POSE OR POSITION IS IN THE
FIRST POSITION, IN THE 5 FIRST POSITIONS, ETC. WE OBSERVE THAT THE

SECOND STEP INTEGRATING THE ORIENTATION IMPROVES THE
LOCALIZATION.

ranking 1 5 10 30 50 100
without idf 25 .90 41.73 46.76 53.96 57.55 63.31

with idf 37.41 54.68 58.27 66.91 69.78 72.66
TABLE II

PERCENTAGE OF CASES IN WHICH THE REAL POSE OR POSITION IS IN THE
FIRST POSITION, IN THE 5 FIRST POSITIONS, ETC. WE OBSERVE THAT THE

IDF WEIGHTING IMPROVES THE RESULTS.

A test set containing 139 positions was built by moving the
robot in the previously mapped space and recording the sensor
data at each position. This test set includes various difficulties
linked to the difference between the mapped space and the real
space (open/closed doors, presence of mobile obstacles, etc.)
and also the relative resemblance of many positions due to the
fact that the mapped space mostly corresponds to corridors.

Despite these difficulties, the algorithm, with a number of
100 particles, generally succeeds well in the task since in
almost 70% of cases the correct answer (within a distance
of 50 centimeters and 25 degrees) is in the first 30 answers
proposed in the initialization process (see table I). We also
note the very positive effect of taking into account the idf
weighting (see table II).

Fig. 12. real position of the robot at the beginning of the localization process:
the pose is at the origin of the arrow and the arrow represents the orientation

B. Global localization

In this subsection, we detail an example of the complete
localization process. In this example, the robot is localized
in front of an office at the beginning of the process (see
figure 12). It has to follow a moving person in the corridor of
our lab using our follow-me behavior [14]. Before starting to
follow a moving person, it initializes its localization which
takes around 2-3 seconds. While the robot is following a
moving person, we perfom a relocalization each time the robot
has traveled about 1 meter or 20 degrees. The process of
relocalization takes about 0.5s while the robot continues to
move. In the next paragraphs, we explain the initialization
phase and after we describe the relocalization process and
illustrate the complete localization process with some figures3.

Fig. 13. Initial observation of the robot used to initialize the localization
process: we see the two walls of the corridor and the two legs of the followed
person

1) Initialization of localization: The initial observation of
the robot is shown in figure 13. According to this observation,
in figure 14, we illustrate the 3 first positions found by the
initialization. We see that the first position found by the
initialization process is close to the real position. The second

3A video of the complete process is available at lig-
membres.imag.fr/aycard/html/Projects/Localization/localization1.mp4.



Fig. 14. 3 first positions found by the initialization process: for each position,
we show in green and red the matching between the hits of the laser and the
grid map using our sensor model

Fig. 15. The 100 positions found by the initialization process: each position
is represented by a blue point

position is wrong and with a small similarity from a global
point of view and the third one is logical because this position
is similar to the real one in terms of observation. At the end of
the initialization process, we see in figure 15 the 100 positions
found. We distinguish 3 clusters (ie, a set of particles close to
one-another) corresponding to the 3 first positions found: the
green cluster corresponds to some positions close to the first
position found ie, the real one, the yellow cluster corresponds
to some positions close to the second position found and
the red one corresponds to some positions close to the third
position. It means that these 3 positions have been considered
as important by the initialization process. This is exactly the

goal of our approach because the initialization process has
concentrated the particles on positions that could correspond
to the real one. Moreover, we see other particles corresponding
to some other positions found by the initialization process.

Fig. 16. The 100 positions after a first relocalization and resampling. In the
bottom part, we see the best position and its matching with the grid map

Fig. 17. The 100 positions after a fourth and sixth relocalization and
resampling

2) The localization process: When the initialization is
done, the robot starts to follow a moving person. After about
one meter, it performs relocalization and resampling of the
particles. The result is presented in figure 16. The yellow
cluster has disappeared because the score of the corresponding
particles were low (ie, low probability that given the second
observation, the robot is localized at one of the corresponding
positions). Some other positions have disappeared as well and



Fig. 18. The 100 positions after different relocalization and resampling

now the particles are focused on the red and green clusters
that have a high probability to correspond to the real position.

After a fourth relocalization (figure 17), the two clusters
are still present but most of the particles are focused on the
green cluster. The red cluster now has very few particles and
moreover the corresponding particles are sparse. After a sixth
relocalization, there is only the red cluster that is present and
the particles are now focused on the real position meaning that
the robot is localized.

When the robot is localized (figure 18), it is able to track its
position while following a moving person. All the particles are
focused in an area which is always close to the real position.

VI. CONCLUSION AND PERSPECTIVES

In this paper, we presented a method to perform global
localization for a mobile robot. The main advantage of the
method is that it initializes global localization with interesting
positions, reducing the cost of managing multiple hypotheses.
Moreover, with this small number of hypotheses, our approach
runs in real time. The approach is based on information
retrieval and indexes for initialization, and particles and sam-
pling for progressively finding the real position of the robot.

Our approach still has two main drawbacks:
1) the real position belongs to the 100 first positions in only

75% of the cases. Moreover, if there are no positions
found that are close to the real one, it’s difficult for our
approach to find the real position of the robot. But this is

a drawback of almost all known approaches to perform
global localization;

2) we use two different processes to initialize global lo-
calization and to perform global localization. Moreover,
these 2 processes use different strategies to solve 2
problems that are very close.

Taking into account the previous drawbacks, our future work
is to perform the complete global localization process using
an approach only based on information retrieval.
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