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Merci Adeline, pour ta générosité depuis notre première discussion sur les EM aux JdS alors
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te remercie moins). Modèles de mélange, programmation, coaching de vie pro, psy... la liste est
longue. Tu m’es un soutien précieux.
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des autres, et à tirer le meilleur de chacun de nous.
Merci Ahlame, Aude, Christophe, Gilles, Patrick, pour votre gentillesse et bienveillance au quo-
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c’est aujourd’hui mon activité favorite : travailler avec des doctorants. Vasilii, nos différences
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Nous avons eu la chance d’avoir l’institut 3IA MIAI, et j’ai pu en bénéficier au travers de deux
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votre confiance et pour ce bout de chemin à parcourir ensemble. J’espère vous apporter ce dont
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Fabien, pour les discussions plus ou moins scientifiques. Merci, maman et papa, d’essayer de
comprendre ce que je fais, et merci pour votre soutien infaillible. Merci Pascale et Jean-Claude
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Introduction

Embarking on an academic career is like beginning a journey through uncharted territory,
where each step forward brings new discoveries, challenges, and opportunities for growth.
As I reflect on the trajectory of my research since completing my Ph.D., I am pleased to see the
many experiences that have shaped my path over the past nine years. In this manuscript, I aim
to put together some important threads of this journey.

While working on this introduction, I have wondered how best to present the diverse array
of topics I have worked on. Ultimately, I realized that the most authentic narrative emerges
from the relationships forged and the collaborations developed along the way. It is through the
lens of these connections—with colleagues, many of whom have become friends—that the true
essence of my journey as a researcher comes into focus.

Through this narrative, I hope to offer not only an overview into my personal and profes-
sional evolution but also a testament to the significant power of community and collaboration.

Once upon a time ...

My research journey in statistical learning began with my PhD thesis, defended in July 2015,
which was supervised by Pascal Massart and Jean-Michel Poggi. Entitled High-dimensional
mixture regression models, application to functional data, my thesis dealt with the challenges of
model selection, specifically the slope heuristics (Birgé and Massart, 2001; Arlot, 2019), for
Lasso penalty in mixture regression models in high-dimension (Devijver, 2015a,b), alongside
its low-rank counterpart for multivariate output (Devijver, 2017a). We proposed a method for
model-based clustering, extended to functional data (Devijver, 2017b), later applied in electri-
cal datasets (Devijver et al., 2020).

Following the manuscript’s submission to reviewers, I started to work with Mélina Gal-
lopin, a fellow PhD student in my lab at the time, marking the beginning of a fruitful partner-
ship and enduring friendship. This collaboration focused on the slope heuristic for Gaussian
Graphical Models, specifically on detecting block-diagonal patterns using thresholding tech-
niques applied to empirical covariance matrices (Devijver and Gallopin, 2018). Mélina was
working on this topic in her PhD thesis, and we discussed it through the Select seminar. I
brought my knowledge in theoretical tools for model selection. Presenting this work at a semi-
nar, Christophe Biernacki asked, among others questions, to discuss the stability of the method.
In practice, it was clear that the method was stable by construction, without resampling, but
in theory, it was less clear. Recently, with Mélina Gallopin and Rémi Molinier, we proved the
stability of the method using topological tools (Devijver et al., 2024).

During my postdoc at KU Leuven, I further explored the field of functional data analysis,
working alongside Gerda Claeskens and Irène Gijbels on modeling the misalignment of func-
tional data (Claeskens et al., 2021). This project led to the development of a nonlinear mixed-
effect modeling approach to account for phase and amplitude variability, yielding a consistent
estimator- a formidable challenge in both modeling and theoretical analysis. I learned about
mixed models, asymptotic theory, and went deeper into functional data modeling. It was also
my first international experience, giving me a new insight into research and teaching.

During my postdoctoral tenure, I was looking for an academic research position, a pro-
cess that demanded considerable time and patience. While these two years were undeniably
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challenging, I took advantage of them by actively engaging with other talented researchers to
explore new and diverse directions.
In discussions with Emeline Perthame about her postdoctoral research, we started to work on
the underlying model of inverse regression. Together, we proposed prediction regions (Devi-
jver and Perthame, 2020) aimed at elucidating the confidence in estimates compared to classical
methods in high dimensions. It was, for Emeline and me, our first project alone, without any
mentor. It relied on Emeline’s knowledge of the model, and my theoretical knowledge of non-
asymptotic and asymptotic tools.
At the same time, Emeline and I worked with Mélina Gallopin to extend Emeline’s method of
mixture of inverse regression using our graphical models to consider nondiagonal covariance
matrices. Our focus centered on addressing biological challenges, with the development of a
novel method that combines the strengths of both models to predict quantitative trait outcomes
from biological data (Blein-Nicolas et al., 2024), in collaboration with Mélisande Blein-Nicolas.
At that time, I also had the opportunity to meet Valérie Monbet, an encounter that significantly
influenced my research direction. I joined a project with Valérie, Madison Joyce Giacofci and
Marie Morvan about mixture of logistic regression models for functional data. Although the mod-
eling aspect was reminiscent of my PhD work, the approach was completely different, driven
by near-infrared spectrometry data aimed at predicting Nonalcoholic Steatohepatitis (NASH)
(Morvan et al., 2021).

Then, I get a researcher position at CNRS in mathematics, working in a computer science
laboratory. In October 2017, I started my tenure at the Laboratoire d’Informatique de Greno-
ble1, where I found myself amidst a plethora of diverse ongoing projects, and there will soon
be many more in the pipeline. Indeed, upon joining the Aptikal team (formerly AMA team), I
was warmly welcomed by my new colleagues, both socially and scientifically.

Massih-Reza Amini and I started several exciting projects. The first one, on semi-supervised
learning in high-dimension, was my first research project supervising a PhD student, with
the support of Massih: writing the project proposal, securing funding, meeting the Master 2
students, supervising an intern and proposing the PhD. Vasilii Feofanov was the student we
selected, which blossomed into a fruitful collaboration (Feofanov et al., 2022, 2024).
Massih also involved me in interdisciplinary projects, among which the MAGNET chair of the
MIAI institute, which led to collaborations with Noel Jakse and Roberta Poloni from SIMAP
on machine learning for material science. We started, with Noel and Rémi Molinier, with the
PhD thesis of Sébastien Becker, where we used existing ML tools and topological data analysis
to understand the crystallization of monoatomic metals (Becker et al., 2022). Our collaboration
then evolved to include the development of new ML models and methods for material science
challenges: with Noel through the PhD thesis of Johannes Sandberg, where we use feature
selection penalization within the high-dimensional neural network potential to detect rel-
evant descriptors (Sandberg et al., 2024), and with Noel and Roberta through the PhD thesis
of Ashna Jose, where we develop an active learning method to construct the training set for
MOFs discovery (Jose et al., 2023, 2024). In these three projects, I was the only statistician in the
supervising team.

In the meantime, Eric Gaussier invited me to participate in two projects. The first involved
probabilistic regression trees, in collaboration with Marianne Clausel and working with Myr-
iam Tami as a postdoc, Sami Alkhoury and Alexandre Seiller as engineers (Alkhoury et al.,
2020). It can be seen as an extension to standard regression trees2, but needs tools from func-
tional analysis for the theoretical side.
The second project was the CIFRE PhD project of Charles Assaad on causal discovery for time
series (Assaad et al., 2022a,c). Since then, causality has become one of my primary research
interests. While my prior knowledge in graphical models served as a foundation, my collab-
oration with Eric (and later Gregor Gössler) has allowed me to explore causality further, par-

1It is worth noting that the applied mathematics lab, Laboratoire Jean Kuntzman, shared the same building. I found
it anecdotal when preparing the concours, it was in fact fundamental to keep the link with my colleagues in statistics,
and facilitate my work to construct a bridge between the two labs.

2which I was familiar with, thanks to Jean-Michel Poggi.
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ticularly in the context of time series analysis: we worked on causal discovery for mixed time
series through Lei Zan’s PhD (Zan et al., 2022), and on causal reasoning for time series within
Anouar Meynaoui’s postdoc (Assaad et al., 2024). Recently, I received a junior chair at the MIAI
institute, where I aim to bridge classical statistics and causality, with application to healthcare
(more details on this will be discussed in the conclusion/perspectives section).

Since I arrived in Grenoble, I also collaborated with researchers from Laboratoire Jean Kuntz-
man on several projects. With Vincent Brault and Charlotte Laclau, I explored mixture of seg-
mentation models (Brault et al., 2024), which brought me back to the realm of mixture models.
We particularly devoted this method to functional data, where segmentation makes a lot of
sense. Additionally, I had the opportunity to collaborate with Adeline Samson on simultane-
ous confidence bands (Devijver and Samson, 2024). Our collaboration began with theoretical
questions during my postdoc and evolved into a detailed exploration of modeling approaches,
particularly the assumptions on bias that are usually made in the literature but are rather strong.

Manuscript outline

This journey may seem chaotic, but there are several ways to cluster the projects.
From the modeling perspective, mixture models, functional data/time series, and networks
have been the primary objects of my study; I like to think of it as an exploration of structured
data, mainly in high-dimension. I am also interested in several aspects of uncertainty, through
the statistical inference of simultaneous confidence bands or prediction intervals, modeling the
uncertainty in the covariates by introducing probabilistic trees, or considering abstract graph
in causal inference.
In terms of mathematical tools, I have engaged with concentration inequalities, functional anal-
ysis, penalized estimators, graph theory, topological data analysis and asymptotic statistics.
Even though these topics may seem unrelated, I have enjoyed exploring the connections be-
tween them, with progress in one project often providing insights into another—sometimes
even beyond what was initially planned.
I would also like to mention that I have had the privilege of collaborating with experts from
various fields, including biology, material science, and healthcare. These collaborations may
not always lead to statistical projects, but they have certainly enriched my understanding and
perspective. My goal has always been to propose interpretable models, which facilitate inter-
disciplinary collaborations.

This manuscript is organized into four fundamental chapters, and an applied chapter:

Chapter 1 Methods for High-Dimension Regression. This chapter addresses the regression task,
where we explain a continuous response from covariates. This is a vast field of research
in statistics and machine learning, but in this manuscript, we particularly focus on: 1) the
classical univariate/multivariate response, with contributions in modeling a nonpara-
metric prediction function with uncertainty in covariates and modeling the uncertainty
around the prediction for a fully parametric model in high dimensions; and 2) functional
data modeling, where we provide several new models validated by theoretical results.

Chapter 2 Network Inference by Gaussian Graphical Model and Its Use. This chapter focuses on
the dependence between covariates. We first theoretically address the estimation of the
Gaussian graphical model through a block-diagonal structure and discuss the stability of
this estimator. Then, we propose some prediction models based on this network structure,
driven by real problems in biology, where the contributions are mainly practical.

Chapter 3 Causal Inference for Time Series. This chapter begins with an introduction to causal
inference, particularly for time series, which is my main research focus. We then intro-
duce our contributions: 1) several independence measures for different kinds of data; 2)
causal discovery methods with various experiments; and 3) causal reasoning through the
identifiability on an abstract causal graph. The contributions here are methodological and
theoretical.
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Chapter 4 Semi-Supervised Learning. This chapter deals with the semi-supervised paradigm, where
many unlabeled points and few labeled points are observed. Two specific tasks are con-
sidered: 1) constructing the labeled set from scratch in both regression and classification
contexts, known as the active learning problem; and 2) multi-class classification with par-
tially labeled data, where we propose an algorithm to construct pseudo-labels for unla-
beled points to improve classification performance. The contributions here are method-
ological and theoretical.

Chapter 5 Application in Material Science. This chapter focused on applications of statistical learn-
ing in Material Science to highlight some significant practical contributions.

As each chapter is independent of the others, I have provided an introduction for each, so
I will not give more details in this section. Each chapter begins with a summary of my contri-
butions, depicted as a list of collaborators and papers. Then, a broad introduction is provided,
motivating the context and discussing the state-of-the-art. Finally, selected contributions are
detailed. Details are omitted, as the goal of this manuscript is to provide a broader view of my
research.

Finally, the manuscript concludes with a discussion on various perspectives and directions
for future research. The main point is that this journey is not finished, and I am excited about
what is next!
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Chapter 1
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laboratory), Charlotte Laclau (Télécom Paris), Adeline Samson (LJK, Applied Mathematics lab-
oratory) and Myriam Tami (Postdoc student), Sami Alkhoury (Engineer) and Alexandre Seiller
(Engineer). Thanks to them!

• Should we correct the bias in Confidence Bands for Repeated Functional Data?,
Devijver, E. and Leclercq, A. (2024), preprint, link HAL.

• Ensembles of PR trees, Alkhoury, S., Clausel, M. Devijver, E., Gaussier, E. and
Seiller, A. (2024), preprint, link HAL.

• Mixture of segmentation for heterogeneous functional data, Brault,V., Devijver, E.
and Laclau, C. (2024), Electron. J. Statist. 18(2): 3729-3773 link.a

• Nonlinear mixed effects modeling and warping for functional data using B-splines,
Claeskens, G., Devijver, E., and Gijbels, I. (2021), Electronic Journal of Statistics,
15(2): 5245-5282, link.b

• Smooth and consistent probabilistic regression tree, Alkhoury, S., Devijver, E.,
Clausel, M., Tami, M., Gaussier, E., and Oppenheim, G. (2020). In Advances in
Neural Information Processing Systems 34, link.c

• Prediction regions through inverse regression, Devijver, E. and Perthame, E. (2020).
Journal of Machine Learning Research, 21(113):1–24, link.

aCode available at https://github.com/laclauc/MixtSegmentation
bCode available at https://cran.r-project.org/web/packages/warpMix/index.html
cCode available at https://gitlab.com/sami.kh/pr-tree

13

https://hal.science/hal-04599968
https://hal.science/hal-04616872
https://projecteuclid.org/journals/electronic-journal-of-statistics/volume-18/issue-2/Mixture-of-segmentation-for-heterogeneous-functional-data/10.1214/24-EJS2286.full
https://projecteuclid.org/journals/electronic-journal-of-statistics/volume-15/issue-2/Nonlinear-mixed-effects-modeling-and-warping-for-functional-data-using/10.1214/21-EJS1917.full
https://proceedings.neurips.cc/paper/2020/hash/8289889263db4a40463e3f358bb7c7a1-Abstract.html
https://www.jmlr.org/papers/volume21/19-535/19-535.pdf
https://github.com/laclauc/MixtSegmentation
https://cran.r-project.org/web/packages/warpMix/index.html
https://gitlab.com/sami.kh/pr-tree


Regression task corresponds to describe a (potentially mutlivariate) continuous response
Y ∈ Y by some covariates X ∈ X D. This has been studied through many models, from the
basic linear heteroscedastic to the complex nonparametric one.

In this chapter, we particularly differentiate two cases: when Y is an univariate or a multi-
variate variable, and when Y corresponds to a function. Methods behind are different: in the
first case, we use different covariates to explain the response, while in the second case, we use
a functional basis to describe the function. If the model seems to coincide, and the standard
estimators can be used in both cases, the differences are of our interest.

The organization of this chapter is the following:

• In Section 1.1, we focus on the regression task with univariate or multivariate variables.
We propose two contributions. The first, detailed in Section 1.1.1, focuses on the linear
regression model in high dimensions. We propose to evaluate the uncertainty around
the prediction by constructing prediction regions when using the inverse regression trick
for the estimation. This is a joint work with Emeline Perthame, and all the details are
available in Devijver and Perthame (2020). The second, detailed in Section 1.1.2, is a non-
parametric estimator based on the standard regression tree, called probabilistic regression
trees, which consider noise in covariates to smooth the prediction function. Ensemble
methods, like boosting, bagging and bayesian additive models, are discussed, and con-
sistency of all these estimators is provided. This project is a joint work with Marianne
Clausel and Eric Gaussier. It starts with the PostDoc of Myriam Tami, who works on an
initial version; and Sami Alkhoury and Alexandre Seiller worked on the numerical exper-
iments. Details for one probabilistic regression tree are available in Alkhoury et al. (2020),
while the ensemble versions are discussed in Alkhoury et al. (2024).

• In Section 1.2, we focus on functional data. When projecting the functional data onto a
functional basis, the statistical analysis returns to a regression task over the functional
basis. We propose three contributions in this manuscript. First, we propose a model in
Section 1.2.1 that takes into account the variability in phase and in amplitude through a
nonlinear mixed effect model. This was the topic of my postdoctoral study, in collabo-
ration with Gerda Claeskens and Irène Gijbels. All the details are available in Claeskens
et al. (2021). Then, in Section 1.2.2, we address another modeling problem concerning
heterogenous data modeled into homogeneous clusters and homogeneous regimes. This
is a joint work with Vincent Brault and Charlotte Laclau, and more details are available
in Brault et al. (2024). In both models, we provide a theoretical analysis about the identi-
fiability of the model and the consistency of the proposed estimators. Finally, in Section
1.2.3, we study the uncertainty on the estimation of the mean curve by providing simul-
taneous confidence band for the linear model. We particularly recast this as a model se-
lection problem. This is a joint work with Adeline Samson, and more details are available
in Devijver and Samson (2024).
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1.1 Regression with univariate and multivariate response

Many methods and models have been proposed for the regression task in the literature. This
section introduces two contributions with different modeling but answering similar questions.
Let consider some covariates X ∈ X D, with D large, and Y ∈ RL the output, and a sample
(xi, yi)1≤i≤n from those random variables of size n.

When considering linear models, if n is large, with respect to D and L, the standard least
square estimator has good performance, but it can be problematic for interpretation. Regu-
larized regression reduces the dimension of the regression problem to the subset of the most
relevant features. Methods include the Lasso (Tibshirani, 1996), the Dantzig selector (Candes
and Tao, 2007), or the Ridge estimator (Hoerl and Kennard, 1970) to refer to the most popu-
lar. These widely used methods are designed to account for univariate response and few im-
plementations exist for multivariate response, considering then independent response terms.
Some extensions have been proposed for generalized linear models, as introduced for exam-
ple in Buhlmann and van de Geer (2011). Another way to deal with high dimensional data
consists in dimension reduction techniques which extract components or latent variables that
summarize the information of a large dataset into a small dimension space. For example, the
Principal Component Regression (PCR) selects a subset of principal components for regression
and focuses on hyperplanes; the Partial Least Square regression (PLS) projects the predicted
variables and looks for latent variables, correlated to both response and covariates, in order
to perform the regression of Y on X in a space of lower dimension than D ; and the Sliced
Inverse Regression (SIR) introduced in Li (1991) restricts the regressors to few projections by
inverting the role of predictors and response. SIR is based on a prior linear dimension reduc-
tion by considering the covariance matrix of the inverse expectation E(X|Y) (hence the name
of the method). The main assumption of SIR relies on Linearity Design Condition, satisfied by
elliptical distributions. However, the number of axes to retain must be specified beforehand,
which is one of the main drawbacks of those methods. More precisely, in the context of regres-
sion with random predictors, several authors proposed reduction dimension techniques based
on the joint distribution of both predictors and response (George and Oman, 1996; Helland,
1992; Helland and Almøy, 1994) to identify components used to reduce the dimension of pre-
dictors matrix. Interestingly, while the regression of interest usually models the conditional
distribution of response given predictors Y|X, some authors explored the properties of inverse
models, meaning that the conditional distribution of predictors is studied given the response
X|Y (Oman, 1991). See Cook (2007) for an interesting overview of these techniques. Whereas
variable selection methods are mainly used for high-dimensional data, the inverse regression
approach is particularly interesting in three specific frameworks. First, when D >> N, if a
large number of covariates is known to have an impact on the response, selecting variables is
not relevant while inverse regression is effective. Secondly, when dealing with large dimension
for both sample size and number of predictors (N and D large), inverse regression is efficient
under few weak assumptions: it avoids the inversion of a large empirical covariance matrix
which is time consuming in practice even if it is invertible in theory. Thirdly, inverse regression
has the advantage to allow multiple response potentially correlated, which is more and more
frequent with real data.

When considering nonlinear models, either the link function can be explicit, using polyno-
mial functions, or any precise combination of functions, or nonparametric models are consid-
ered, to not define explicitly the model (Hastie et al., 2001). Several nonparametric models have
been proposed, such as kernels and neural networks, but regression trees (Breiman et al., 1984)
and the ensemble methods based on them such as random forests (Breiman, 2001), gradient-
boosted trees (Friedman, 2000; Elith et al., 2008) and Bayesian additive regression trees (Tan
and Roy, 2019) have been successfully used for regression problems in many applications. For
regression trees, the feature space is partitioned into a set of hyper-rectangles, and a constant
model is fitted in each region. As a result, standard regression trees may have difficulty adapt-
ing to the smoothness of the link functions and the noise in the input data. Extensions of re-
gression trees have been proposed to generalize this prediction function. Soft trees (Irsoy et al.,
2012) and fuzzy trees (Suarez and Lutsko, 2003) are both used for classification and regression
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and can learn a parameter vector at each node, the dimensionality of which is equal to that of
the input data. For a specific node, this vector is used in a gating function: it gives the proba-
bility for each observation to be assigned to the left children of the node. Each example is thus
assigned to all leaves with a certain class membership, and the final prediction is a smooth com-
bination of the prediction at each node. Soft and fuzzy trees can be seen as a direct extension of
the hierarchical mixtures of experts (HME, Jordan and Jacobs (1994)): indeed, if the HME use
predefined trees or trees learned from another method (typically, a standard decision regres-
sion tree), then soft trees are constructed based on the hierarchy of experts. Smooth transition
regression (STR) trees, introduced in da Rosa et al. (2008), follow the same general principle but
instead rely on a single parameter at each node. A sigmoid-based gating function is also used
to assign points to different regions of the tree. Instead of focusing on one tree, ensemble meth-
ods have been proposed to improve regression and classification tasks. The most well-known
ensemble methods based on regression trees are certainly random forests (RF) introduced in
Breiman (2001), where small trees are averaged to reduce the variance, and gradient-boosted
trees (GBT) (Friedman, 2000; Elith et al., 2008) with an additive method, where each new tree
reduces the resulting error, thus reducing the bias. Soft trees, STR trees, and PR trees, viewed as
construction blocks, can also be used in ensemble extensions to reduce the bias or variance and
thus improve the global performance. More recently, the ensemble method of Bayesian addi-
tive regression trees known as BART (Chipman et al., 2010) has been proposed. As an ensemble
method, many trees are combined. The Bayesian a priori is used to define the structure of each
tree and the parameters necessary to define each one. The boosting model is used to reduce the
error, although an overall average is also calculated to reduce the variance. The extension to
soft trees has been proposed, namely soft-BART (Linero and Yang, 2018), which also allows for
sparsity using a Dirichlet a priori on the feature space.

When considering prediction, one can be interested directly in the value of the prediction,
or to measure the uncertainty around this estimator. From a theoretical viewpoint, consistency
of the prediction has been achieved for many models: regression trees (Györfi et al., 2002),
standard RF (Scornet et al., 2015), boosting extensions (Zhang and Yu, 2005), Bayesian exten-
sion of standard regression trees (Ročková and van der Pas, 2020), Bayesian extension of soft
trees (Linero, 2018), to refer to tree-based methods. But one may also be interested in the un-
certainty in the prediction, and thus consider prediction regions. For Lasso based estimators,
Javanmard and Montanari (2014); van de Geer et al. (2014); Zhang and Zhang (2014) derive
confidence regions for slope coefficient and statistical testing of sparsity for linear model using
several tools: relaxed projection (Zhang and Zhang, 2014), desparsifying Lasso (van de Geer
et al., 2014) or through the computation of an approximate inverse of the Gram matrix (Javan-
mard and Montanari, 2014). Since those pioneer works, several articles provide extensions for
more general models or estimators, as generalised linear model (van de Geer et al. (2014) for
convex loss function, Janková and van de Geer (2015) for subdifferential loss). We also refer to
Meinshausen (2015) for groups of variables and Stucky and van de Geer (2018) for linear re-
gression models with structured sparsity, among others. However, those results rely on strong
assumptions on the design and although some authors consider more practical aspects (Chao
et al., 2015; Lee et al., 2016), those results still remain difficult to be implemented.

We introduce in the following two contributions: we study the inverse regression in Section
1.1.1, for which we provide prediction regions, and we propose in Section 1.1.2 a new type
of regression trees, that are smooth and can be used within each ensemble extension, and we
derive their consistency.

1.1.1 Prediction regions through inverse regression

In this section, we propose to address the linear regression problem for elliptical distributions
under an inverse regression approach rather than sparse regression. Introduced in Li (1991), the
inverse regression relies on the Linearity Design Condition (LDC) which relates the covariates
to elliptical distribution ED(µ, Σ, ϕ) for a vector µ ∈ Rd, a positive semidefinite matrix Σ ∈ Rd×d

and a function ϕ : R+ → R, characterized by the following theorem.

Theorem 1.1.1 (Cambanis et al. (1981)). X ∼ ED(µ, Σ, ϕ) with rank(Σ) = k if and only if

X = µ +RΛU(k)
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where the equality holds in distribution, and where U(k) is a k-dimensional random vector uniformly
distributed on the unit hypersphere with k− 1 dimensions Sk−1, R is a non-negative random variable
with distribution function F related to ϕ being stochastically independent of U(k) , µ ∈ RD and Λ ∈
RD×k with rank(Λ) = k.

We propose to address the following linear regression problem with random regressors:

Xi ∼ ED(0, Γ⋆, ϕ) with rank(Γ⋆) = D (1.1)
Yi|Xi = A⋆Xi + εi (1.2)

ε1, . . . , εN ∼ EL(0, Σ⋆, ϕ) with rank(Σ⋆) = L

where Y = (Y1, . . . , YN) ∈ RL×N contains L responses for N subjects and X = (X1, . . . , XN) ∈
RD×N contains D elliptical centered predictors with covariance matrix Γ⋆. An interesting and
relatively simple approach to handle the high dimensional problem, when D is large or/and
when the number of observations N is smaller than D, is to consider the inverse regression prob-
lem:

Yi ∼ EL(0, Γ, ϕ) with rank(Γ) = L (1.3)
Xi|Yi = AYi + ei (1.4)

e = (e1, . . . , eN) ∼ EL(0, Σ, ϕ) with rank(Σ) = D

where A is a D× L matrix of slope coefficients of the inverse regression.
Interestingly, forward parameters (Γ⋆,A⋆, Σ⋆) are expressed in function of the inverse pa-

rameters (Γ,A, Σ) through the following mapping:

Ψ : (Γ,A, Σ) 7→(Γ⋆,A⋆, Σ⋆)

=(Σ +AΓA⊤, (Γ−1 +A⊤Σ−1A)−1A⊤Σ−1, (Γ−1 +A⊤Σ−1A)−1).

The mapping Ψ is an involution, the forward regression model (1.1)-(1.2) is then equiva-
lent to the inverse regression model (1.3)-(1.4). The advantage of the inverse approach appears
when structure is assumed on the large residual covariance matrix Σ in the inverse regression
problem. Indeed, assuming that Σ is diagonal drastically reduces the number of parameters to
estimate, while it implies a diagonal + low rank decomposition for Γ⋆ through mapping Ψ: the
residuals of the inverse model are not correlated while allowing structured correlations among
covariates in the forward model. This is a strength of this model as in practice, correlated pre-
dictors often occur on real data. In this work, we study the uncertainty around the prediction

ŶN+1 = E(Y|X = XN+1) = Â⋆xN+1,

which can be quantified by deriving a prediction region. Assuming that covariance matrices
Σ and Γ are both known and that Σ is diagonal as previously stated, we are able to derive the
distribution of Â⋆.

Theorem 1.1.2 (Asymptotic distribution of Â⋆). Suppose ((X1, Y1), . . . , (XN , YN)) is a sequence of
iid random variables satisfying the model defined in Equations (1.1) and (1.2). Let

g : RD×L → RL×D

A 7→ A⋆.

Then, the following holds for the estimator Â⋆:
√

N(vec(Â⋆)− vec(A⋆)) →
N→+∞

NDL(0, Θ(A));

where Θ(A) = Cov(vec(Dg(A).(Â−A))). Moreover, Θ(Â) is a consistent estimator of Θ(A), and
√

N(vec(Â⋆)− vec(A⋆))TΘ(Â)−1(vec(Â⋆)− vec(A⋆)) →
N→+∞

χ2
DL.

where F is the distribution function of the random variable R involved in the stochastic representation
of vec(A⋆), see Theorem 1.1.1.
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Figure 1.1: Prediction regions for L = 2. Dotted line: LSE for N = 500 and Bootstrapped
Lasso for N = 50, long dashed line: IR, solid line: true parameters, grey dots: 1000 responses
generated from the same covariate’s profile.

This result provides closed-form expressions to derive confidence regions for A⋆ and pre-
diction regions.

Then, we provide the prediction region for a new observation.

Theorem 1.1.3. Suppose ((X1, Y1), . . . , (XN , YN)) is a sequence of iid random variables satisfying the
model defined in Equations (1.1) and (1.2). Then, for XN+1 ∈ RD,

P
(

YN+1 ∈ P̃RY,α

)
→

n→+∞
1− α

where

P̃RY,α =
{

y ∈ RL s.t. (1.5)

(y− Â⋆XN+1)
T(Ω(A⋆XN+1) + Σ⋆)−1(y− Â⋆XN+1) ≤ χ2

L(1− α)
}

where Ω(A⋆XN+1) = (IL ⊗ XT
N+1)Θ(A)(XT

N+1 ⊗ IL)., where Θ(A) = Cov(vec(Dg(A).(Â −
A))).

One can notice that the covariance matrix that is inverted in Equation (1.5) breaks down into
2 parts. The first one, Ω(A⋆XN+1), represents the variance of the prediction which depends on
the estimation accuracy of A⋆ while the second part, Σ⋆, is the variance inherited from the
residuals.

Experimental validation

We consider a Gaussian setting, a response with dimension L = 2, D = 100 covariates, and
N ∈ {50, 500}. We focus on sparse regression coefficients and independent responses: A is
a D × L matrix with 90% of zero entries randomly drawn. The 10% nonzero remaining coef-
ficients are uniformly drawn into a uniform distribution on (−2, 2). Matrix Γ of covariances
between response terms is set to IL. The residual covariance matrix of inverse regression Σ
is set to ID. Note that a diagonal Σ and a sparse A under the inverse model lead to a sparse
matrix of regression coefficients for forward regression A⋆. For each simulated design, 1 000
learning datasets with dimension (N, D) are generated as well as 1 000 corresponding testing
observations.
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We compare the prediction regions derived from the 3 following methods: the proposed
method based on inverse regression referred as IR in the following, the so-called least square
estimator (LSE) for designs with N > D and a lasso prediction interval based on bootstrap for
designs with N < D. In this simulation study, the level of confidence for prediction regions
is set to 95%. Figure 1.1 displays a graphical representation of prediction regions. Dotted line
represents ellipses computed by LSE when N = 500 and Lasso when N = 50, long dashed line
represents ellipses computed by IR and solid line represents true prediction regions computed
with true parameters used for simulation. Grey dots are 500 replications of responses from the
same covariate’s profile representing the residual variance. Three specific profiles of covariates
are considered: on the left panel, prediction ellipse for the median covariate’s profile is com-
puted which is an easy situation. When N = 500, both LSE and IR provide similar ellipses,
close to the true one. When N = 50, IR’s ellipse is close to the true one while lasso correctly
predicts the response but the volume of the ellipse is larger. For the middle panel, a covariate’s
profile corresponding to quantile 0.35 is generated making the computation of the prediction
ellipse more complex. When sample size is large, LSE and IR are competitive regarding to true
ellipse and equivalent. When N = 50, the ellipse computed with IR is larger than the theoret-
ical one. The bootstrapped Lasso fails in prediction. At last, for the right panel, an even more
extreme profile associated to quantile 0.2 is generated, making the computation less reliable.
When N = 500, the volume of ellipses computed by LSE and IR gets even larger as the covari-
ate’s profile gets far from the mean. Notice that LSE and IR again achieve similar ellipses in this
setting. When N = 50, conclusions of the middle panel apply as well.

1.1.2 Probabilistic regression trees and their ensemble extensions

Let Y ∈ R be an output random variable linked to X = (X1, · · · , XD) a D-dimensional input
random vector through the following additive noise model:

Y = f (X; Θ) + εY, εY ∼ N (0, σ̃2),

where Θ is the set of parameters on which f relies. In this section, we focus on a nonparametric
method for regression, based on regression trees, that we call probabilistic regression trees (PR
trees). We also extend it to ensemble methods, namely bagging, boosting and bayesian additive
regression trees.

PR tree

The standard regression tree partitions the feature space into hyper-rectangles (Rk)1≤k≤K, re-
ferred to as regions, and assigns a weight γk to each region k:

f (x; Θ) =
K

∑
k=1

γk1{x∈Rk},

where Θ = ((Rk, γk)1≤k≤K). The splitting process, being dyadic, can be represented as a binary
tree, where each node determines the features to split on and its corresponding value, resulting
in the final partition given by the leaves of the tree. PR trees replace the indicator function from
the standard regression trees with a function Ψ: for x ∈ RD,

fPR (x; Θ) =
K

∑
k=1

γkΨ(x;Rk,σ).

The set of parameters to be estimated is thus Θ = ((Rk)1≤k≤K,γ,σ), with σ ∈ RD
+.

Given a training set DN = {(xi, yi)1≤i≤N}, for a fixed σ, the regions and weights are up-
dated until reaching a stopping criterion (weight estimate corresponds to the regression coeffi-
cient between (yi)1≤i≤N and P). During this process, the number of regions increases, and the
matrix P and weights γ are gradually updated. Lastly, the vector σ can either be based on a
priori knowledge or be learned through a grid search on a validation set. We rely on the latter in
our experiments. Under some assumptions on the regularity of the true function (in a Sobolev
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space), with number of regions going to infinity but not so fast with respect to the sample size
and with diameter converging to 0, we derive the consistency of the parameter Θ̂N of PR tree:

lim
N→+∞

E[| fPR(X; Θ̂N)−E(Y|X)|2] = 0.

Bagging and boosting ensemble methods

Bagging consists of averaging simple, noisy, but unbiased models. The random forest (RF) is
a substantial modification of bagging, which builds a collection of decorrelated trees and then
averages them. The extension of PR trees to RFs over m trees, denoted by PR-RF, is defined as
follows:

f (m)
PR-RF (x; Θ) =

1
m

m

∑
ℓ=1

fPR

(
x; Θ(ℓ)

)
where Θ = (Θ(1), . . . , Θ(m)) with Θ(ℓ) characterizing the ℓth RF’s tree in terms of parameters
(i.e., split variables, cut points, predictions, and variances).

The standard RF is known to reduce the variance, because it averages identically distributed
random variables (each tree), which are constructed to be the least correlated using bootstrap
variables for each tree. This conclusion applies to any bagging extension, and specifically to the
PR-RF, with the bias-variance trade-off being illustrated in the experiments. From a theoretical
viewpoint, we can easily adapt the consistency result from Scornet et al. (2015) to derive the
consistency of PR-RF when the number of trees m grows to infinity:

lim
N→+∞,m→+∞

E[| f (m)
PR-RF(X; Θ̂N)−E(Y|X)|2] = 0.

On the other hand, boosting methods gradually improve the prediction by optimizing the
residuals with respect to the prediction based on the model constructed so far. Let us assume
that (m− 1) PR trees have been built so far. The mth smooth tree and its parameter Θ̂(m), defined
by

Θ̂(m) := argmin
Θ(m)

N

∑
i=1

yi −
m−1

∑
ℓ=1

K(ℓ)

∑
k=1

γ
(ℓ)
k [Pik]

(ℓ)

− K(m)

∑
k=1

γ
(m)
k [P(m)

ik ]

2

where the matrices P = (P(m)
ik )1≤i≤N,1≤k≤K(m) depend on the regions. So, the prediction function

is given by:

f (m)
PR-GBT (x; Θ) =

m

∑
ℓ=1

fPR

(
x; Θ[ℓ]

)
where Θ = (Θ[1], . . . , Θ[m]).

Boosting methods are known to reduce the bias of the prediction function (while allowing
for a small variance), which is true for our PR-GBT prediction function, as illustrated in the
experiments (see Figure 1.2). However, boosting forever can overfit the data, and it is thus nec-
essary to stop the procedure with an adaptive finite number of steps (Zhang and Yu, 2005). In
theory, we mimic the results obtained in Zhang and Yu (2005) and so we apply early stopping;
in practice, we fix the number of trees. Note that this context is more difficult in theory, be-
cause each tree is dependent on the previous one with a random number of trees. We achieve
convergence in probability instead of an L2 convergence:

f m̂
PR-GBT

(
X; Θ̂N

) P−→
N→+∞

E[Y|X].

Probabilistic Bayesian additive regression trees

The Bayesian additive regression tree is a boosting extension, where a priori distribution are
settled to add randomness. In this section, we describe how to construct P-BART, an extension
of BART (Chipman et al., 2010) using PR trees.
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We consider m distinct regression trees, with the ℓth tree having a tree structure T(ℓ) and
weights γ(ℓ) = (γ

(ℓ)
1 , . . . , γ

(ℓ)
K ). Trees are fitted iteratively until no change is observed, thus

holding all other m− 1 trees constant and considering the residual response that remains un-
fitted. The prediction using P-BART is made as an averaging over the iterations (after burning)
of the sum (boosting part) of the prediction for a new covariate x through a PR tree.

fP-BART(x; Θ) =
1

it− itburn

it

∑
t=itburn+1

m

∑
ℓ=1

K(ℓ)

∑
k=1

γ
(ℓ),t
k Ψ(x;R(ℓ),t

k ,σ),

where Θ corresponds to all the parameters needed to define P-BART, T(ℓ),t is the ℓth tree at iter-
ation t, and similarly its parameters, while it and itbrun are respectively the number of iterations
performed and the number of iterations for the burning.

We derive the prior and posterior distribution associated to our PR trees for the bayesian
additive context, details are omitted here.

Under classical assumptions for BART (detailed in the main paper) and similar assumptions
as before for probabilistic regression tree, we prove the convergence of the posterior distribu-
tion to the true function, defined by

ΠN(A) =

∫
A ∏N

i=1 p f (yi|xi)Π(d f )∫
∏N

i=1 p f (yi|xi)Π(d f )
,

where Π denotes the prior probability measure over L2([0, 1]D): for Nε2
N → ∞ and εN → 0 as

N → ∞, we get, for some M1 > 0,

ΠN

(
∥ f̃ − f ∥N ≥ M1ε2

N

)
P−→

N→+∞
0.

Experimental validation

Detailed results are provided in the main paper, but we illustrate here the evolution of the bias
and variance for each estimator on the Diabetes data set. For the prediction function f̂ , we
define:

bias( f̂ ) = E(X,Y)

{(
Y− E{ f̂ (X)}

)2
}

;

var( f̂ ) = E(X,Y)

(
Var{ f̂ (X)}

)
;

where the inner expectation and variance are with respect to the estimator. To compute the
bias and variance, we subsample the data with 80% for training and 20% for testing, which
estimates the inner and outer expectations.

In Fig. 1.2, we provide the result for one tree, RF, GBT, and BART. It is well known that
bagging improves the variance (and makes it decrease with the number of trees). This is indeed
illustrated in the plots. However, we observe that standard RF, PR-RF, and STR-RF achieve the
same variance. At the end, PR-RF has the best performance in RMSE, because it improves (even
for one tree) the bias. Note that the plot of bias is very similar for one tree and RF. It is also
known that boosting reduces the bias, as illustrated in this figure. Again, all methods perform
similarly, and the gain for PR-RF in RMSE is achieved thanks to the variance reduction for one
tree. Finally, as BART is a mixture between bagging and boosting (after a warming phase), we
recognize the improvement in both the bias and variance. All the methods provide comparable
results, the standard BART having slightly worse performance and PR-BART a slightly better
performance with 100 trees.
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Bias Variance MSE

Figure 1.2: Evolution of the performance of one tree (first row), bagging methods (second row),
boosting methods (third row), and Bayesian ensemble methods (fourth row) for the Diabetes
data set. Left: bias, middle: variance, right: MSE. For one tree, we increase the depth of the tree
to vary the dimension, whereas for the ensemble methods, we increase the number of trees.
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1.2 Functional data

Functional Data Analysis (FDA) deals with the theory and the exploration of data observed
over a finite discrete grid and expressed as curves (or mathematical functions) varying over
some continuum such as time (Ferraty and Vieu, 2006; Ramsay and Silverman, 2002, 2005).

When analyzing functional data, the questions are slightly different than the one from iid
data. One can wonder: (i) is there a common main (mean) functional pattern to be distin-
guished?; (ii) can we quantify the significant individual fluctuations with respect to such a
mean pattern?; (iii) can we disentangle the high heterogeneity of the data both at the level
of the studied individuals and on the time dimension?; (iv) does the uncertainty around the
estimation of the common main functional pattern can be measured?

We consider multiple independent observations of the same function on several timepoints,
yielding noisy functional data (Yi(tj))1≤i≤N,1≤j≤n. In the several contributions presented in
this manuscript, we consider different models, but to fix the idea we can start with the linear
functional model:

Yi(tj) = f (tj) + εij, (1.6)

where εi. = (εi1, . . . , εin) is the noise representing the individual functional variation around f .
We assume that the εi are independent.

To analyze such data, a common approach, typically in the parametric setting, involves
projecting the data onto a functional space defined by a family of functions (Li et al., 2022;
Kokoszka and Reimherr, 2017). We assume that the global mean f belongs to a functional
space SL∗ = Vect((t 7→ BL∗

ℓ (t))1≤ℓ≤L∗) with L∗ functions (BL∗
ℓ )1≤ℓ≤L∗ assumed to be linearly

independent, and can be written as f (t) = f L∗(t) = ∑L∗
ℓ=1 µL∗

ℓ BL∗
ℓ (t) ∈ SL∗ . Several families can

be considered, as the B-splines (considered in Section 1.2.1), wavelets (considered in Section
1.2.2). One can also expect more structure, through the following assumption.

Assumption 1.2.1. The functional family (t 7→ BL∗
ℓ (t))1≤ℓ≤L∗ is orthonormal with respect to the

standard scalar product < ., . >.

Note that if Assumption 1.2.1 holds, one get µL∗
ℓ =< f L∗ , BL∗

ℓ > for ℓ = 1, . . . , L∗. The Leg-
endre family is orthonormal, the Fourier family is orthogonal for the standard scalar product
(but not orthonormal), and the B-splines family is not orthogonal.

Depending on the modelisation, we can assume that the noise is a white noise, εi ∼ N (0, σ2 I),
or that there exists a sequence of coefficients (ciℓ)1≤ℓ≤Lε such that εij = ∑Lε

ℓ=1 ciℓBLε

ℓ (tj), with ciℓ ∼iid
N (0, σ2).

Let f L∗ ∈ SL∗ with L∗ unknown, and consider the space SL for L fixed. As SL is a family of
linearly independent functions, there always exists a unique vector µL,L∗ of coefficients defining
f L,L∗(t) = ∑L

ℓ=1 µL,L∗
ℓ BL

ℓ (t) = BL(t)µL,L∗ such that

f L,L∗ = arg min
f∈SL
{∥ f L∗ − f ∥2

2},

and if the family is orthonormal (Assumption 1.2.1), it corresponds to the projected coefficients
µL,L∗
ℓ :=< f L∗ , BL

ℓ >. We can prove that if the family is orthonormal, f L∗ ,L∗ = f L∗ and the
projection coefficients verify µL,L∗

ℓ = µL∗
ℓ for ℓ = 1, . . . , min(L, L∗).

As the observations are recorded at discrete time points (tj)1≤i≤N,1≤j≤n, we introduce the
family of functions evaluated at the discrete times of observations. For L ∈ N, let us denote
BL the matrix of n× L with coefficient in row j and column ℓ equal to BL

ℓ (tj). We consider the
operator PL defined as the matrix PL = ((BL)TBL)−1(BL)T of size L× n (this operator is a bit
more complex when the functional family is not orthonormal wrt the standard scalar product).
Then we define the coefficients µL,L∗ which are the coefficients of µL,L∗ approximated on the
vector space, denoted SL, defined by the matrix BL.

µL,L∗ := PLBL∗µL∗ .

The corresponding finite approximated regression function is denoted f L,L∗ and is defined,
for all t ∈ [0, 1], as

f L,L∗(t) = BL(t)µL,L∗ .
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When considering the estimation of the regression function f L∗ on the space of dimension L
defined by the family BL, we do not directly estimate f L∗ but its projection on this finite space,
which corresponds to the projected function f L,L∗(t) and its associated coefficients (µL,L∗

ℓ
)1≤ℓ≤L.

Proposition 1.2.2. The vector of coefficients (µL,L∗
ℓ

)1≤ℓ≤L is estimated by the least square estimator

µ̂L,L∗ defined as:

µ̂L,L∗ :=
1
N

N

∑
i=1

PLyi. ∼ NL

(
µL,L∗ ,

σ2

N
PLBLε

(BLε
)T(PL)T

)
.

For a fixed t ∈ [0, 1], the estimator of the function f L,L∗(t) is defined by:

f̂
L,L∗

(t) =
L

∑
ℓ=1

µ̂L,L∗

ℓ
BL
ℓ (t) = BL(t)µ̂L,L∗ .

This comes back to the standard linear regression, and we consider the classical least square
estimator. However, it induces a bias that will be complex to evaluate, as described in Section
1.2.3.

One can then consider more complex models to describe functional data and answer the
first questions. To describe the synchronization over time of the curves, one can preprocess
them or take it as a part of the modeling process. Aligning the individual curves via individual
shift functions is conveniently done via time warping functions, see for example Bigot (2013);
Claeskens et al. (2010); Dupuy et al. (2011); Gervini and Gasser (2004); Kneip and Gasser (1992);
Wang and Gasser (1997). One approach towards describing the curve-specific deviations from
the mean curve is via random effects, see for example Chen and Wang (2011); Elmi et al. (2011);
Guo (2002). An analysis of variance model for functional data describing the phase variability
through time-warping and allowing for inference in the presence of amplitude variability, was
introduced by Gervini and Carter (2014). A functional mixed effects regression model was used
to analyse spike train data in Hadjipantelis et al. (2014). A shift-warping method is used in Car-
roll et al. (2020) for multivariate functional data where each of the components may contribute
to a shift with its own parameter value. A nonparametric registration method is proposed in
Chakraborty and Panaretos (2021), based on a local variation measure introduced to provide
nonparametric conditions that lead to identifiability. The phase and amplitude are separated in
Tucker et al. (2013) by using a representation of functional data that is based on the Fisher-Rao
metric to compute an elastic shape analysis of the curves. Based on this representation, Yu et al.
(2017) analyses the phase variation using a principal nested sphere approach. In Strait et al.
(2017), a constrained elastic shape analysis is used with a landmark representation. While there
are Bayesian methods for registration too, see for example Cheng et al. (2016), these are not
considered here. In Section 1.2.1, we introduce a new nonlinear mixed effects modeling and
warping, and prove the consistency of the associated estimator.

Another modelisation aspect is the heterogeneity. Model-based clustering approaches for
functional data have been extensively studied in the literature (James and Sugar, 2003; Liu
and Yang, 2009; Bouveyron and Jacques, 2011; Jacques and Preda, 2013, 2014; Devijver, 2017b).
For the particular case of heterogeneous data that interests us in this article, one can broadly
differentiate between methods that perform simultaneously clustering and segmentation and
co-clustering based methods.
Samé et al. (2011) proposed to deal with heterogeneous time series by integrating the notion
of change of regimes within a mixture of hidden logistic process regressions. The model is
considering two latent variables, one for the mixture component and one for the segmenta-
tion. Model selection is done through an adapted BIC criterion. However, while attempting to
consider changes of regime, this approach fails to account for the ordering of observations, a
key feature when dealing with functional data. Samé and Govaert (2012) extended this model
for online segmentation of time series. In an effort to account for these potential changes of
regimes, another family of mixture models, namely the mixture of piecewise regression, has
been proposed. Hébrail et al. (2010) first define this notion of piecewise regression to analyze
temporal data, by proposing a distance-based model that simultaneously performs clustering

24



on the set of functional observations (through a Kmeans-like algorithm) and segmentation (in
the form of piecewise constant function summarizing) within each of the obtained cluster. This
work was further generalized to a more flexible probabilistic framework by Chamroukhi (2016),
who designed a model based on a mixture of piecewise regression densities. The piecewise re-
gression is modeled by a segmentation of polynomial functions, as a generalization of spline
basis where knots have to be fixed. However, this sets a particular form within each segment.
Bouveyron et al. (2017) proposed a co-clustering model to analyze multivariate functional data.
They apply this model to analyze electricity consumption curves, and found that due to the
nature of the temporal data, the clustering over timepoints is in fact close to a segmentation
over time. Bouveyron et al. (2021b) extend this method to multivariate time series (with sev-
eral time series for each observation and each timepoint), using a sparse representation over
principal components. In Bouveyron et al. (2021a), authors extend this co-clustering approach
using a shape invariant model, allowing for translation in time, and translation and scaling in
mean. Galvani et al. (2021) propose another bi-clustering algorithm for functional data while
considering a potential misalignment through translation. While co-clustering based approach
have proven efficient in this context, the clustering obtained on the time dimension do not
account for the ordering of the observation. In Section 1.2.2, we introduce a new mixture of
segmentation model, ad prove the consistency of the associated estimator.

Finally, providing simultaneous confidence bands for the function means, rather than point-
wise confidence intervals, is essential to measure uncertainty around the global mean and ex-
tend Proposition 1.2.9. This task presents several challenges: the confidence band must control
the simultaneous functional type-I error rate, balance being conservative enough to maintain
confidence without being overly so, and be computationally feasible. Several methods have
been proposed to address these issues. For datasets with many time points but no repetition,
asymptotic distribution methods study the infinity norm between the true function and its esti-
mator (Hall, 1991; Claeskens and Van Keilegom, 2003), though these can be overly conservative
for smaller samples. Bootstrap methods, while suitable for small samples, are computationally
intensive. The volume-of-tube formula approach, used by Sun and Loader (1994), Zhou et al.
(1998), and Krivobokova et al. (2010), constructs confidence bands using an unbiased linear es-
timator. Wang et al. (2022) and Liebl and Reimherr (2023) further developed methods to reduce
computational complexity and variability. Some studies, like Bunea et al. (2011) and Telschow
et al. (2023), rely on multiple observations of the same function, proposing threshold-type esti-
mators and bands based on the Gaussian kinematic formula. Recent extensions have been pro-
posed, to nonstationary random field in Telschow et al. (2023), based on conformal prediction
in Diquigiovanni et al. (2022), or having a prediction goal in mind in Nicolás Hernández and
Jacques (2024) by considering functional time series data set. However, a common limitation is
not accounting for the bias of the functional estimator. Sun and Loader (1994) proposed a bias
correction, but it remains impractical due to the open choice of smoothing parameters. In non-
parametric frameworks, bias is approximated using second derivative estimators, but general
solutions for bias handling are scarce. Section 1.2.3 aims to address the bias issue in confidence
band construction for general functions using a finite functional orthonormal family.

1.2.1 Nonlinear mixed effects modeling and warping for functional data

In this section, we propose a nonlinear functional mixed model to represent variability in am-
plitude and phase. We provide an estimator that is proven to be consistent, along with a con-
vergent algorithm.

The model and its identifiability

Suppose one observes individual curves Y1(t), Y2(t), . . . , YN(t) on the interval [0, 1] (without
loss of generality), and a first aim is to find a main pattern µ(t) in these individual curves.

We consider the following discretization of the functional mixed model with time points
(ti,j) for j = 1, . . . , Ti; i = 1, . . . , N, where Ti denotes the number of fixed (non-random) time
points for the individual i:

Yi(ti,j) = µ
{

w−1(ti,j;θi)
}
+ Ui

{
w−1(ti,j;θi)

}
+ εi,j, (1.7)
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with µ the unknown common mean, Ui denotes the unknown random effect on the amplitude
for the observation i, w : [0, 1] → [0, 1] is a flexible warping function strictly increasing and
depending on a random variable θi ∼ Nr(θ0, Σθ), that describes the individual phase variabil-
ity. We assume that for all i, the error vectors εi = (εi,1, . . . , εi,Ti )

⊤ with εi ∼ NTi (0Ti , σ2
εITi ) are

i.i.d., meaning that the error terms are independent of ti,j and of the warping effects θi.
The warping function w, the unknown mean function µ and the individual random effect

amplitude functions Ui are modeled in a flexible fashion via B-splines of degree p and with K
interior knots 0 = κ0 < . . . < κK + 1 = 1, such that: for every t ∈ [0, 1],

µ(t) =
Kµ

∑
ℓ=−pµ

α
µ
ℓ Bµ

ℓ,pµ+1(t;κ
µ),

Ui(t) =
KUi

∑
l=−pUi

αU
i,l B

U
i,l,pUi

+1(t;κ
Ui ),

w−1(t;θi) =

∫ t
0 exp

{
h−1(u;θi)

}
du∫ 1

0 exp {h−1(u;θi)} du
,

h−1(u;θi) =
Kh

∑
l=−ph

θi,l B̄h
l,ph+1(u;κh),

where αU
i = (αU

i,−pUi
, . . . , αU

i,KUi
)⊤ is such that

αU
i =


αU

i,−pUi
...

αU
i,KUi

 ∼ NmUi

(
0mUi

, ΣUi
)

with ΣUi =


σ2

U,1 0 . . . 0
0 σ2

U,2 . . . 0

0 0
. . . 0

0 . . . 0 σ2
U,mUi

 ,

the covariance matrix for which we assume a diagonal structure, and which needs to be es-

timated. Further we denote α∼
U =

(
(αU

1 )
⊤, . . . , (αU

N)
⊤)⊤, a random vector taking values in

R∑N
i=1 mUi

×1. Note that w−1 (and hence w) is by construction an increasing function. A non-
random version of this warping function was introduced in Ramsay and Silverman (2005).
To ensure identifiability, the function h−1 will be decomposed using a basis of centralized B-
splines, i.e. we consider (B̄h

l,ph+1)l=−ph ,...,Kh
satisfy∫ 1

0
B̄h

l,ph+1(u;κh)du = 0.

The vector of random effects θi = (θi,−ph , . . . , θi,Kh)
⊤ describes the individual phase variability,

for which we assume a linear mixed effects model

θi = θ0 + Ei + ε̃i,

with Ei ∼ Nr(0r, ΣE) and ε̃i ∼ Nr(0r, σ2
ε̃Ir) independent. Then θi ∼ Nr(θ0, Σθ), with Σθ =

ΣE + σ2
ε̃Ir. To ensure identifiability, we assume that σ2

ε̃ is known. Further, we assume that the
αU

i s and θis, the random effects describing the individual phase and amplitude variability, are
independent of each other.

For further analysis it will be useful to introduce some matrix notation. The matrix Bµ
i of

dimension Ti ×mµ contains (j, l)th element Bµ
l,pµ+1(tij;κµ), and BU

i is the matrix of dimension

Ti×mUi with (j, l)th element BU
i,l,pUi

+1(tij;κUi ). Further, (Bµ
i )

θi = ([(Bµ
i )

θi ]j,l)j=1,...,Ti ; l=−pµ ,...,Kµ
,

with
[(Bµ

i )
θi ]j,l = Bµ

l,pµ+1{w
−1(ti,j;θi);κµ}.

Define [(Bµ
i )

θi ,θ̃i ]j,l = Bµ
l,pµ+1[w

−1{w(ti,j;θi); θ̃i};κµ] for j = 1, . . . , Ti and l = −pµ, . . . , Kµ.

Similarly, we define (BU
i )

θi and [(BU
i )

θi ,θ̃i ]j,l .
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Finally, we provide sufficient and necessary conditions to ensure the identifiability of model.
First, note that it is identifiable if and only if at least one (approximate) individual model (1.7)
is identifiable. We thus focus on a fixed i, and on the set of parameters (αµ, σ2

ε, ΣUi ,θ0, Σθ).
Remark also that if we know (σ2

ε, ΣUi ), or if we know σ2
ε, or if we know ΣUi , the problem is

much simpler.

Theorem 1.2.3. Let i∈{1, . . . , n} be given. Let θi ∼ Nr(θ0, Σθ) and θ̃i ∼ Nr(θ̃0, Σθ̃) be used to
define two warping functions w−1(.;θi) and w−1(.; θ̃i), and let Xi and X̃i be the corresponding warped
functions, such that

Yi(t) = Xi{w−1(t;θi)} = X̃i{w−1(t; θ̃i)}.

Then model (1.7) is identifiable if and only if

Bµ
i = Eθi ,θ̃i

{
(Bµ

i )
θi ,θ̃i

}
;

(BU
i )
⊤ΣUi BU

i = Varθi ,θ̃i

{
(Bµ

i )
θi ,θ̃iαµ

}
+ Eθi ,θ̃i

[{
(BU

i )
θi ,θ̃i

}⊤
ΣUi (BU

i )
θi ,θ̃i

]
.

and at least one of the three condition is not satisfied:

1. (BU
i )
⊤BU

i ̸= 0mUi
;

2. HU
i = BU

i {(B
U
i )
⊤BU

i }
−1(BU

i )
⊤ = ITi ;

3. (BU
i )
⊤BU

i is diagonal.

The proof relies on the iteration of two identifiable steps until convergence, the one for
warping parameters and the one of the warped process. Note that the identifiability conditions
are essentially conditions on the englobing B-spline basis structure.

Estimation procedure and asymptotic properties

Recall that the unknown parameters of model (1.7) are (αµ, σ2
ε, Σ∼

U ,θ0, Σθ). Model (1.7) is a non-
linear functional mixed effects model due to the composition by the warping function, which is
an essential ingredient to describe the individual phase variability. First, we analyse each part
of the model, that is, the warping parameters and the linear mixed effect model, by providing
an estimator and theoretical guarantees. Then, we propose an iterative estimation procedure,
where in a first step we fix the warping parameters (θ0, Σθ) and estimate the functional pa-
rameters (αµ, σ2

ε, Σ∼
U); and next, we start from these estimated parameters, and estimate the

warping parameters. In Theorem 1.2.4 we prove that the algorithm is converging.

We denote by ((α̂µ)(∞), (σ̂ε)(∞), (Σ̂∼
U)(∞), θ̂(∞)

0 , (Σ̂θ)(∞)) the estimator obtained at the end of
the algorithm. First we derive the pointwise convergence of the algorithm.

Theorem 1.2.4. Fix N and T. Suppose (Y1, . . . , YN) is a sequence of iid random variables satisfying the
functional nonlinear mixed model (1.7) observed on fixed time points: for i = 1, . . . , N, for j = 1, . . . , Ti,
[Yi]j = Yi(ti,j). Moreover, suppose that the model is identifiable and that the update of θi is a contraction
mapping.

Then, ((α̂µ)(∞), (σ̂ε)(∞), (Σ̂∼
U)(∞), θ̂(∞)

0 , (Σ̂θ)(∞)) exists and is unique, and the algorithm con-
verges to this solution with a geometric rate with respect to the Euclidean distance.

As we are working with a nonlinear least square estimator, we need to define the weighted
tail product, first introduced in Jennrich (1969).

Definition 1.2.5. Let p be a nonnegative integer and (tj)j=1,...,p be fixed time points. Let x = (xp) and
y = (yp) be two sequences of real numbers and let

(x, y)π
p =

1
p

p−1

∑
j=1

xjyj(tj+1 − tj).
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If (x, y)π
p converges to a real number when p→ +∞, its limit (x, y)π is called the weighted tail product

of x and y. For l = 1, . . . , r, we denote by

∂l(µ + Ui) =
∂[(µ(w−1(ti,j; θ̃i)) + Ui(w−1(ti,j; θ̃i)))j=1,...,Ti ]

∂[θ̃i]l
.

the partial derivative of the aligned signal. We define

ai,Ti (θ̃i) =
[
(∂l(µ + Ui), ∂l′(µ + Ui))

π
Ti

]
l=1,...,r;l′=1,...,r

the matrix with coefficients the weighted tail product between two partial derivatives, and ai(θ̃i) its limit
when Ti → +∞.

Suppose we know the warping parameters (θi)i=1,...,N . Then, we warp the observations
(Yi(ti,j))j=1,...,Ti ; i=1,...,N onto the estimated warped curves Xi,j = Yi{w(ti,j;θi}, and we fit a func-
tional linear mixed model on (Xi)i=1,...,N using maximum likelihood estimation, which leads to
estimators (α̂µ, Σ̂U , (σ̂2

ε)) and predictors (α̂U
i )i=1,...,N .

We finally provide the statistical consistency of the full procedure. This has the following
meaning. When the sample size and the number of time points are going to infinity, the pa-
rameters estimated by the iterative process are converging almost-surely to the true parameter.
Finally, the consistency is deduced for the common mean, seen as a functional parameter.

Theorem 1.2.6. Suppose (Y1, . . . , YN) is a sequence of iid random variables satisfying the functional
nonlinear mixed model observed on fixed time points: for i = 1, . . . , N, for j = 1, . . . , Ti, [Yi]j = Yi(ti,j).
We first make the following assumption, to avoid having to theoretically deal with a modeling bias. We
assume that the functions µ, (Ui)i=1,...,N and w belong to the space spanned by the considered spline
basis, and that σε →

min Ti→∞
0.

Suppose that the model is identifiable and that the update of θi is a contraction mapping. We assume
the existence and positive definiteness of I , which is the limit of minus the expected Hessian matrix of
the log-likelihood function based on the model. We also assume that for all i = 1, . . . , N, the r× r-matrix
ai(θi) is non-singular.

Then,

((α̂µ)(∞), (σ̂ε)
(∞), (Σ̂∼

U)(∞), θ̂(∞)
0 , (Σ̂θ)(∞))

a.s.−→
n→∞

min Ti→∞

(αµ, σ2
ε, Σ∼

U ,θ0, Σθ).

As a consequence, we get that, from a functional viewpoint, for µ ∈ span(Bµ), if we denote µ̂ =

(α̂µ)(∞)Bµ,
∥µ− µ̂∥L2([0,1])

a.s.−→
n→∞

min Ti→∞

0.

1.2.2 Mixture of segmentation

In this section, we propose to split the considered heterogeneous data into homogeneous clus-
ters of individual curves, each of them being segmented over time into homogeneous regimes.
To this end, we consider a mixture of segmentation over the projection of the curves onto some
functional basis.

The model and its identifiability

We observe multivariate individual curves (Yih(tj))1≤i≤N,1≤j≤d,1≤h≤H of dimension H over d
timepoints and within a population of size N. The heterogeneous population is studied through
a mixture model of K clusters, encoded indifferently in its binary form, zik = 1 if and only if the
curve i belongs to the cluster k, and its vector form, zi = k if and only if the curve i belongs to the
cluster k, for 1 ≤ k ≤ K and 1 ≤ i ≤ N. Each observation belongs to the cluster k ∈ {1, . . . , K}
with probability πk ∈ [0, 1]. The heterogeneity in time is represented through Lk + 1 segments
(Ikℓ)0≤ℓ≤LK : if zik = 1 and j ∈ Ikℓ, encoded by wjℓ = 1,

Yih(tj) = fkℓh(tj) + ηijh,
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with ηijh corresponds to some random noise. We propose to decompose our signal into several
time periods that are meaningful in practice (in hours, in days, in weeks depending on the
application), and to have the same function fkℓh within the considered interval, through the
same segment. The modeling assumption is equivalent to a main function fkℓh for the hth
component, for individuals belonging to the cluster k, and for a timepoint in the ℓth segment.
This means that within a segment and a cluster, there is a random variation (seen as a noise)
independent and identically distributed over each component of the multivariate curve.

We denote (αij) ∈ Rp the coefficient decomposition vectors of the component j ∈ {1, . . . , d}
onto the functional basis, and the individual i ∈ {1, . . . , N}, and the orthonormal characteriza-
tion leads to, for the level M,

(Yi.(tj))1≤j≤d = Παij;

where Π is a matrix defined by the functional basis of size M. We consider the wavelet co-
efficient dataset (Ai)1≤i≤N = (αi.)1≤i≤N ∈ (Rd×D)N , which defines N observations whose
probability distribution is modeled by the following finite matrix-variate Gaussian mixture of
segmentation model. For the cluster k ∈ {1, . . . , K}, the heterogeneity in time is described
by Lk + 1 segments, defined by Lk break-points Tk0 < Tk1 < · · · < TkLk

< Tk,Lk+1. Then,
for an observation i ∈ {1, . . . , N} in the cluster k ∈ {1, . . . , K}, for ℓ ∈ {0, . . . , Lk} such that
j ∈
{

Tk,ℓ + 1, Tk,ℓ + 2, . . . , Tk,ℓ+1
}

, we have:

[Ai]j.|(zik = 1, Wjℓ = 1) = µkℓ + εij (1.8)

with εij ∼ ND (0, Σkℓ) where Σkℓ is diagonal with the values (σkℓr)1≤r≤D.
We first establish the identifiability of the multivariate model (1.8).

Theorem 1.2.7 (Identifiability of (1.8)). Assume that:

(ID.1) For every k ∈ {1, . . . , K} and ℓ ∈ {0, . . . , Lk}, there exists at least one r ∈ {1, . . . , p} such that
σkℓr ̸= σk,ℓ+1,r or µkℓr ̸= µk,ℓ+1,r.

(ID.2) We have D ≥ max
k∈{1,...,K}

Lk + 1.

(ID.3) If there exists k ̸= k′ such that Lk = Lk′ then:

• there exists ℓ ∈ {0, . . . , Lk} such that Tkℓ ̸= Tk′ ,ℓ,
• or there exists ℓ ∈ {0, . . . , Lk} and r ∈ {1, . . . , p} such that: σkℓr ̸= σk′ ,ℓ,r or µkℓr ̸= µk′ ,ℓ,r.

(ID.4) For every k ∈ {1, . . . , K}, πk > 0.

Under these assumptions, the model (1.8) is identifiable.

Mixture models are known to be identifiable up to a label switching: two partitions can be
the same while the cluster labels being reversed. In this model, a natural order is to choose the
labeling of each cluster such that

k ≤ k′ ⇔ Lk ≤ Lk′ .

This alleviates the problem of label switching; and it can be completely removed when the
(Lk)1≤k≤K are all different.

Estimation

In this section, we assume that K the number of clusters is known, as well as the number of
segment within each cluster (Lk)1≤k≤K. Using the model (1.8), under identifiability, by noting
T the set of the break points and θ = ((µkℓr, σkℓr)1≤k≤K,0≤ℓ≤LK ,1≤r≤p, (πk)1≤k≤K) the set of
parameters, we obtain the following likelihood:

lik (A; K,T ,θ) =
N

∏
i=1

K

∑
k=1

πk

Lk

∏
ℓ=0

Tk,ℓ+1

∏
j=Tkℓ+1

D

∏
r=1

[
1√

2πσkℓr
e−

1
2σkℓr

(αijr−µkℓr)
2]

.

The mixture model leads to the product over individuals i ∈ {1, . . . , N} and the sum over the
clusters k ∈ {1, . . . , K} while the segmentation is related to the product over each segment ℓ ∈

29



{0, . . . , Lk} and timepoints indexed by j ∈ {Tkℓ + 1, . . . , Tk,ℓ+1}, for the cluster k ∈ {1, . . . , K}.
In addition to the parameters K, T and θ, we search to estimate the partition z. We denote θ̂ the
maximum likelihood estimator. We use the Expectation Maximisation (EM) algorithm (Dempster
et al., 1977) to estimate it.

For i ∈ {1, . . . , n}, k ∈ {1, . . . , K}, the computation of π
(c)
k at step c is explicit. The other

parameters (µ(c)
kℓr, σ

(c)
kℓr)1≤k≤K,1≤ℓ≤LK ,1≤r≤p are given using the dynamic programming (Bellman

and Kalaba, 1957; Kay, 1993).
We then prove that the maximum likelihood estimator is consistent. To simplify nota-

tions, we consider univariate functional data or projection of the observed functions onto a
1-dimensional basis, such that p = 1 in this section, but the conclusion would be the same. To
simplify the notations, we set σkℓ = 1, but the results can be extended as well to any variance.

Theorem 1.2.8. Let A be a matrix of a n× T observations of the model (1.8) with true parameter θ⋆,T ⋆

where the number of clusters K and the number of segments (Lk)1≤k≤K are known. We assume that there
exists M > 0 such that for all k ∈ {1, . . . , K} and ℓ ∈ {0, . . . , Lk},

µkℓ ∈ [−M; M];

that there exists τmin > 0 such that for all k ∈ {1, . . . , K} and ℓ ∈ {0, . . . , Lk},

Tk,ℓ+1 − Tkℓ > τmind.

We also assume that log(N)/d −→
n,d→+∞

0. If there exists k ̸= k′ such that Lk = Lk′ then we assume

that there exists at least τmind coordinates j such that the distribution of Yij|z⋆ik = 1 is different from the
distribution of Yij|z⋆ik′ = 1. Finally, we assume that there exists a constant c > 0 such that for every
k ∈ {1, . . . , K}, πk > c, and Assumption (ID.1). Then,(

θ̂, T̂
)

P→
n,d→+∞

(θ⋆,T ⋆) .

Experimental study is given in the main paper, illustrating the good behavior of the method.

1.2.3 Simultaneous confidence bands

While confidence intervals for finite quantities are well-established, constructing confidence
bands for objects of infinite dimension, such as functions, poses challenges. In this section, we
explore the concept of parametric confidence bands for functional data with an orthonormal
basis. Specifically, we revisit the method proposed by Sun and Loader (1994), which yields
confidence bands for the projection of the regression function in a fixed-dimensional space.
Our contributions are as follows:

• we disentangle the bias issue by explicitly defining the parameter of interest within the
approach of Sun and Loader (1994); and

• we propose a method for selecting the dimension of the approximation space, treating it
as a model selection problem, with a trade-off between conservatism and confidence level
assurance.

Functional regression model

We consider the linear functional model introduced in Equation (1.6). When considering the
estimation of the regression function f L∗ on the space of dimension L defined by the family BL,
we do not directly estimate f L∗ but its projection on this finite space, which corresponds to the
projected function f L,L∗(t) and its associated coefficients (µL,L∗

ℓ
)1≤ℓ≤L.

Proposition 1.2.9. BL()PLyi is a Gaussian process with mean f L,L∗() and covariance function

(s, t) 7→ σ2BL(s)PLBLε
(BLε

)T(PL)T(BL(t))T , and ( f̂
L,L∗ − f L,L∗)() is a centered Gaussian process

with covariance function CL,L∗ : (s, t) 7→ σ2

N BL(s)PLBLε
(BLε

)T(PL)T BL(t)T .
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Even if the estimator f̂
L,L∗

is defined on the functional space associated to SL, it can also
be seen as an estimator of the function f L∗ which lies in the space SL∗ . In that case, the error
includes a functional approximation term due to the approximation of f L∗ on the space SL,

which will be nonzero if L ̸= L∗. It corresponds to the bias of the estimator f̂
L,L∗

, i.e. the

difference between its expectation and the true f L∗ . Indeed, recalling that f L∗ = f L∗ ,L∗ , the
error of estimation can be decomposed into

f̂
L,L∗

(t)− f L∗(t) = f̂
L,L∗

(t)− f L,L∗(t) + f L,L∗(t)− f L∗ ,L∗(t) =: StatL,L∗(t) + BiasL,L∗(t).

The first term StatL,L∗(t) = f̂
L,L∗

(t)− f L,L∗(t) is the (unrescaled) statistics of the model. It

is a random functional quantity which depends on the estimator f̂
L,L∗

. From Proposition 1.2.9,
for any t ∈ [0, 1], we define the centered and rescaled statistics ZL(t) such that:

ZL(t) :=
StatL,L∗(t)√

Var(StatL,L∗(t))
=

f̂
L,L∗

(t)− f L,L∗(t)√
CL,L∗(t, t)

∼ N (0, 1).

The covariance function can be estimated using the observations yi. as

ĈL,L∗(s, t) =
1

N − 1

N

∑
i=1

(BL(s)PLyi. − f̂
L,L∗

(s))(BL(t)PLyi. − f̂
L,L∗

(t)).

The second term BiasL,L∗(t) = E( f̂
L,L∗

(t)) − f L∗ ,L∗(t) is the bias of the estimator f̂
L,L∗

(t)

when estimating the true function f L∗ ,L∗(t). The bias is due to the fact that the estimation is

potentially performed in a different (finite) space than the space where the true function f L∗ ,L∗

lives. This is a functional bias, which is not random. It corresponds to the approximation
(orthogonal projection if Assumption 1.2.1 holds) of f L∗ from SL∗ to the space SL. It can be
written as follows:

BiasL,L∗(t) = BL(t)µL,L∗ − BL∗(t)µL∗ .

Thus, we can deduce that if the family is orthonormal (Assumption 1.2.1 holds), if L < L∗,
BiasL,L∗(t) ̸= 0, while if L ≥ L∗, BiasL,L∗(t) = 0.

Confidence Bands of f L,L∗ for a fixed L The objective is to construct a confidence band for

f L,L∗ based on observations y, for a given L ∈ {Lmin, . . . , Lmax}. This follows the framework

proposed by Sun and Loader (1994), using an unbiased and linear estimator f̂
L,L∗

.

Theorem 1.2.10 (Sun and Loader (1994)). Set a probability α ∈ [0, 1]. Then, we have

P
(
∀t ∈ [0, 1],

∣∣∣ f̂ L,L∗
(t)− f L,L∗(t)

∣∣∣ ≤ d̂L(t)
)
= 1− α

with d̂L(t) = q̂L
√

ĈL,L∗(t, t)/N;

and q̂L defined as the solution of the following equation, seen as a function of qL:

α = P(|tN−1| > qL) +
∥τL∥1

π

(
1 +

(qL)2

N − 1

)−(N−1)/2

,

with (τL)2(t) = ∂12c(t, t) = Var(ZL(t))′ where we denote ∂12c(t, t) the partial derivatives of a func-
tion c(t, s) in the first and second coordinates and then evaluated at t = s.

We can thus deduce a confidence band of level 1− α for f L,L∗ :

CB1( f L,L∗) = {∀t ∈ [0, 1], [ f̂
L,L∗

(t)− d̂L(t); f̂
L,L∗

(t) + d̂L(t)]}.
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Figure 1.3: Illustrative example. For the three families, resp. Fourier, Legendre and the splines,
we display on the top row the observed functional data, on the middle row the confidence
bands for different values of L (3, 5 and 11), and on the bottom row the bound dL.

Remark that ∥d̂L∥∞ increases with L, and when the functions (BL
ℓ )1≤ℓ≤L consists in an or-

thonormal family, ∥d̂L∥∞ increases with L until L = L∗ and then ∥d̂L∥∞ is constant with L. This
band is illustrated on Figure 1.3. The top row shows several functional data generated under
the Fourier family (left), Legendre (middle), and Spline (right). The middle row displays the
confidence bands of f L,L∗ for different values of L = 3, 5 and 11, and the bottom row shows

the bound d̂L. The true functions f L,L∗ are in cyan and the confidence bands are in purple. The
bands are very precise for each L, with d̂L increases with L. As dL can be seen as a variance,
d̂L(t) is larger on the boundaries of the time domain, as there are fewer observations near 0 and
1.

In the main paper we also evaluate numerically the levels of the obtained confidence bands,
which is the expected one whatever the value of L, especially when L < L∗ and L > L∗ but also
when L > Lε.

Selection of the best confidence band with a criteria taking into account the bias We pro-
pose a criterion balancing bias and basis dimension, based on the definition of the band as the
estimation of a quantile of an empirical process. Inspired by model selection tools, it helps
select the best dimension L. In the following, we assume that Lmax is large enough such that
f Lmax,L∗ = f L∗ .

We work on the quantile qL, its oracle version qL∗ for the level L∗ and the estimation q̂L.
All of them are scalar, in a collection of scalars, with L = Lmin, . . . , Lmax. A natural criteria to
choose the best L is such that the estimator q̂L minimizes the quadratic error E

(
∥qL∗ − q̂L∥2

)
.

However, this quadratic error is unknown as qL∗ is unknown. Instead, we study ∥q̂Lmax − q̂L∥2.
While the theoretical quadratic error E

(
∥qL∗ − q̂L∥2

)
decreases when L < L∗ and increases

when L > L∗, the approximation ∥q̂Lmax − q̂L∥2 of this error is still decreasing when L > L∗.
We observe a bias-like behavior: high when dimension is small and small when dimension

is large. Selecting a dimension using this criterion overfits the data. Therefore, we propose
penalizing this quantity by the dimension L divided by the sample size N, similar to model se-
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Figure 1.4: Illustrative example. We show the distribution of the selected model, over 100
repetitions, with the new criteria used to select a model for different basis.

lection criteria. We introduce a regularisation parameter λ > 0 which balances the two terms.
A natural criteria to select the best L is then

c̃rit(L) = ∥q̂Lmax − q̂L∥2 + λ
L
N

.

We define L̃ = arg minL c̃rit(L), and center the band around f̂
L̃,L∗

:

CB2( f L∗) = CB1( f L̃,L∗)

In Figure 1.4, we test which model is selected over 100 repetitions for the three basis. The
estimated dimension is equal or larger than the true L∗ = 11. In the main paper, we have
empirically shown that the selected dimension is interesting, and that the related confidence
band has a width smaller than the naive confidence band consisting in using Lmax.
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Chapter 2

Network inference by gaussian
graphical model and its use

This chapter is the result of collaborations with Mélina Gallopin (I2BC, Institute of Integrative
Biology of the Cell), Emeline Perthame (Institut Pasteur), Valérie Monbet (IRMAR, Mathematics
Research Institute of Rennes), Madison Giacofci (IRMAR, Mathematics Research Institute of
Rennes), Rémi Molinier (Institut Fourier, Mathematics Laboratory) and Marie Morvan (PhD
student). Thanks to them!

• Stable network inference in high-dimensional graphical model using
single-linkage, Devijver, E., Gallopin, M. and Molinier, R., preprint, 2024+,
link HAL.

• Nonlinear network-based quantitative trait prediction from biological data, M.
Blein-Nicolas, E. Devijver, M. Gallopin, E. Perthame, Journal of the Royal Statis-
tical Society Series C: Applied Statistics, 2024, link.a

• Prediction of the NASH through penalized mixture of logistic regression models,
M. Morvan, E. Devijver, M. Giacofci, and V. Monbet, Annals of Applied Statistics,
15(2): 952-970, 2021, link

• Block-diagonal covariance selection for high-dimensional Gaussian graphical
models, E. Devijver et M. Gallopin, Journal of the American Statistical Association,
2017, link.b

aCode available in the R package xLLiM
bCode available in the R package shock
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Graphical models (Whittaker, 1990; Lauritzen, 1996) have become a popular tool for repre-
senting conditional dependencies among variables using a graph. For Gaussian graphical mod-
els (GGMs), the edges of the corresponding graph are the non-zero coefficients of the inverse
covariance matrix. To estimate this matrix in high-dimensional contexts, methods based on an
ℓ1-penalized log-likelihood have been proposed (Meinshausen and Bühlmann, 2006; Yuan and
Lin, 2007; Banerjee et al., 2008). A popular method is the graphical lasso algorithm introduced
by Friedman et al. (2008). In this chapter, we focus first on the graphical lasso algorithm, and
then on its use through a more general model. The organization of this chapter is the following:

• In Section 2.1, we focus on the graphical lasso algorithm as an estimator of the Gaussian
graphical model in high-dimension. It has been shown that this algorithm can be decom-
posed into two steps: first, by constructing blocks of independent variables through hier-
archical clustering, and then estimating a sparse structure within each block. We propose
two theoretical contributions based on this decomposition. The first, detailed in Section
2.1.1, introduces an estimator that focuses on the block-diagonal structure of the graphical
lasso by performing model selection on it first and then estimating the sparse structure
independently. We provide theoretical results showing that this estimator is adaptively
minimax. This is a joint work with Mélina Gallopin, and all the details are available in
Devijver and Gallopin (2018). The second contribution, detailed in Section 2.1.2, discusses
the stability of the graphical lasso. We derive theoretical bounds that prove that the de-
composition into two steps can make the estimator stable. The structure added by the
block decomposition enhances stability. This is a joint work with Mélina Gallopin and
Rémi Molinier, and all the details are available in Devijver et al. (2024).

• In Section 2.2, we propose two models of prediction, based on graphical modeling, to
answer practical questions in biology. This section introduces two methods, the devel-
opment of which has been driven by data and expert knowledge. The first, detailed in
Sectop, 2.2.1, aims to answer the following question: what is the link between a set of eco-
physiological traits and the proteomic data of maize? Biomarkers are known to be highly
correlated, and the graphical model is needed to account for those correlations. This is
a joint work with Mélisande Blein-Nicolas, Mélina Gallopin and Emeline Perthame. All
the details are available in Blein-Nicolas et al. (2024). The second, detailed in 2.2.2, aims
to answer the following question: can we predict the NASH from blood spectra? The
discretization of the spectra is considered raw data, and thus a set of highly correlated co-
variates. The graphical model is also needed here to account for those correlations. This
project corresponds to a part of the PhD thesis of Marie Morvan, with whom I collaborate,
and which was supervised by Madison Giacofci and Valérie Monbet. All the details are
available in Morvan et al. (2021).

36



2.1 High-dimensional Gaussian graphical models

Graphical models are a class of statistical models that combine the rigor of probabilistic ap-
proaches with the intuitive representation of relationships provided by graphs. They consist of
a set of random variables and a graph, where each vertex (or node) represents a random vari-
able and each edge (or link) expresses the dependence structure between the variables. These
models are particularly valuable for their interpretability, as the dependence structure among
variables is easily readable from the graph.

Considering Gaussian graphical models, the set of variables Y = (Y1, . . . , Yp) ∈ Rp, and
a sample y = (y1, . . . , yn), are drawn from a multivariate normal distribution with density
ϕp(0, Σ) where Σj,j = 1 for all j ∈ {1, . . . , p}. The edges in the graph are encoded in the precision
matrix Θ = Σ−1. Thus, to consider a sparse graph, one has to estimate a sparse precision matrix
Θ. Several methods have been proposed to penalize the log-likelihood associated to this model
(Meinshausen and Bühlmann, 2006; Yuan and Lin, 2007; Banerjee et al., 2008), we focus in this
chapter on the Graphical Lasso (Friedman et al., 2008), defined as follows:

Θ̂(λ; y) = argmax
Θ

{log det Θ− tr(SΘ)− λ∥Θ∥1}

over nonnegative definite matrices Θ, where λ is a nonnegative tuning parameter and S the
sample covariance estimate.

However, these network reconstruction methods often perform poorly in so-called ultra
high-dimensional contexts (Giraud, 2008; Verzelen, 2012), when the number of observations is
much smaller than the number of variables. Even with the ℓ1 penalty, selecting a relevant level
of sparsity is a complex task when the sample size is limited, which is a common situation in
various applications, such as in systems biology where the cost of the sequencing technologies
may limit the number of available observations (Frazee et al., 2011). In practice, the network
reconstruction problem is facilitated by restricting the analysis to a subset of variables, based
on external knowledge and prior studies of the data (Ambroise et al., 2009; Yin and Li, 2011).
When no external knowledge is available, only the most variable features are typically kept in
the analysis (Guo et al., 2011; Allen and Liu, 2013). Choosing the appropriate subset of variables
to focus on is a key step in reducing the model dimension and the number of parameters to
estimate, but no procedure is clearly established to perform this selection in high-dimensional
settings.

Fortunately, Witten et al. (2011) and Mazumder and Hastie (2012) have noticed a particular
property of this estimator, that has been very useful for its development: the graphical lasso
estimation for a given level of regularization λ ≥ 0 can thus be decomposed into two steps:

Step 1 Identify the connected components of the undirected graph with adjacency matrix A as-
sociated to the thresholding of the absolute value of the sample covariance matrix at level
λ;

Step 2 Perform Graphical Lasso with parameter λ on each connected component separately.

This decomposition has fasten the algorithm Witten et al. (2011), but also opens a new in-
sight on the graphical lasso estimator. Tan et al. (2015) have noticed that the first step is equiv-
alent to performing a single linkage clustering on the variables. Then, they have proposed the
cluster graphical lasso, using an alternative to single linkage clustering in the two-step procedure,
namely the average linkage clustering. The selection of the cutoff applied to hierarchical clus-
tering in the first step of the cluster graphical lasso algorithm is performed independently from
the selection of the regularization parameters in the second step of the algorithm. Their results
suggest that the detection of the block-diagonal structure of the covariance matrix prior to net-
work inference in each cluster can improve network inference. Other authors have recently
proposed procedures to detect the block-diagonal structure of a covariance matrix. Pavlenko
et al. (2012) provided a method to detect this structure for high-dimensional supervised clas-
sification that is supported by asymptotic guarantees. Hyodo et al. (2015) proposed tests to
perform this detection and derived consistency for their method when the number of variables
and the sample size tend to infinity. We propose in Section 2.1.1 to come back to the graphical
lasso estimation into 2 steps, and to select a model among the model collection from the step 1
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before inferring a sparse network in each connected component. Particularly, we prove that the
corresponding estimator is adaptive minimax.

Network inference is a domain within statistics where stability is particularly critical. When
performing network inference on two data sets derived from the same model with a small sam-
ple size using classical methods, the resulting inferred networks are often markedly different.
This variability arises from the large number of parameters that need to be estimated and the
complexity of the optimization task involved. However, without stability, interpretability be-
comes challenging, which undermines one of the major advantages of graphical models. This is
especially pertinent in the context of regulatory networks derived from real omics data, where
observations are typically limited (Frazee et al., 2011; Krumsiek et al., 2011; Michailidis and
d’Alché Buc, 2013). As a result, practitioners have often criticized the developed methods, opt-
ing instead to manually select an appropriate subset of variables to focus on. However, such
external knowledge is not always available and could be enhanced by a deeper understanding
of the data and the application of machine learning tools. Several methods have been pro-
posed to stabilize variable selection in GGMs, primarily based on resampling. In Bach (2008);
Meinshausen and Buhlmann (2006), the authors suggest subsampling the observations, run-
ning a model on each sample, and retaining variables selected consistently across all or most
samples. Both papers provide theoretical results that guarantee good performance asymptot-
ically with increasing sample sizes. Building on Bach (2008), Colby et al. (2018) evaluate the
stability and accuracy of gene regulatory network inference using bootstrap aggregation. Ad-
ditionally, Haury et al. (2012), drawing from Bach (2008); Meinshausen and Buhlmann (2006),
focuses specifically on bootstrap sampling for network inference. More recently, Bodinier et al.
(2023) proposed a score to measure the overall stability of the set of selected features, introduc-
ing a new calibration strategy for stability selection. In a broader context, Lim and Yu (2016)
introduced ESCV, while Bar-Hen and Poggi (2016) proposed removing the most influential ob-
servations to achieve stable networks, akin to the jackknife method. However, these methods
require substantial computation because they rely on subsampling. Furthermore, large sample
sizes are necessary to ensure good performance with subsampling techniques. Then, in Sec-
tion 2.1.2, we prove that the first step of the graphical Lasso estimator is stable, and illustrate
numerically the stability of several methods.

2.1.1 Block-diagonal covariance selection

We propose in this section to recast the estimation of the graphical Lasso into a model selection
problem, and propose a non-asymptotic model selection procedure supported by an oracle type
inequality and a minimax lower bound, based on the slope heuristic.

Our goal is to infer the graph of conditional dependencies between variables, encoded by
the precision matrix Θ = Σ−1. Since the matrices Σ and Θ have the same block-diagonal
structure, we first seek to detect the optimal block-diagonal structure of the covariance matrix
Σ, i.e. the optimal partition of variables into blocks. We index the variables from 1 to p. We note
B = {B1; . . . ; BK} the partition of variables into K blocks where Bk is the subset of variables in
block k, and pk is the number of variables in block k. The partition describes the block-diagonal
structure of the matrix: off the block, all coefficients of the matrix are zeros. We consider the
following set of multivariate normal densities with block-diagonal covariance matrices:

FB =


fB = ϕp(0, ΣB) with ΣB ∈ S++

p (R)

∣∣∣∣∣∣∣∣∣∣∣

λm ≤ min(sp(ΣB)) ≤ max(sp(ΣB)) ≤ λM,

ΣB = Pσ

Σ1 0 0

0
. . . 0

0 0 ΣK

 P−1
σ ,

Σk ∈ S++
pk

(R) for k ∈ {1, . . . , K}


,

(2.1)
where S++

p (R) is the set of positive semidefinite matrices of size p, λm and λM are real numbers,
min(sp(ΣB)), max(sp(ΣB)) are the smallest and highest eigenvalues of ΣB and Pσ is a permuta-
tion matrix leading to a block-diagonal covariance matrix. We denote DB = ∑K

k=1 pk(pk − 1)/2
the dimension of the model FB.

As the set of all possible partitions of variables is large (its size is the Bell number), we
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consider the collection:

BΛ = (Bλ)λ∈Λ (2.2)

given by the partition of variables corresponding to the block-diagonal structure of the ad-
jacency matrix Eλ = [1{|Sj,j′ |>λ}] 1≤j≤p

1≤j′≤p
, based on the thresholded absolute value of the sample

covariance matrix S. Note that the data is scaled if needed so that the set of thresholds Λ ⊂ [0, 1]
covers all possible partitions derived from Eλ.

Once we have constructed the collection of models FΛ = (FB)B∈BΛ , we select a model
among this collection using the following model selection criterion:

B̂ = argmin
B∈BΛ

{
− 1

n

n

∑
i=1

log( f̂B(yi)) + pen(B)

}
,

where pen(B) is a penalty term to define and f̂B = ϕp(0, Σ̂B) where Σ̂B is the maximum likeli-
hood estimator of ΣB. The matrix Σ̂B is constructed block by block, using the sample covariance
matrix of the dataset restricted to variables in each block.

The penalty term pen(B) is based on non-asymptotic model selection properties. We aim at
selecting, among B, the optimal partition B⋆. First, for each model indexed by B, we consider
the density f̂B = ϕp(0, Σ̂B) where Σ̂B is the maximum likelihood estimator of ΣB. Among all
B ∈ BΛ, we want to select the density f̂B which is the closest one to the true distribution f ⋆. To
measure the distance between the two densities, we define the risk:

RB( f ⋆) = E(d2( f ⋆, f̂ B)),

where d is a distance between two densities. Ideally, we would like to select the partition B that
minimizes the risk RB( f ⋆): this partition is called the oracle. Unfortunately, it is not reachable
in practice because the true density f ⋆ is unknown. However, we will prove that we do almost
as well as the oracle, i.e. we select a model for which the risk of the procedure is upper bounded
by the oracle risk, up to a constant.

Before stating the theorem, we recall the definition of the Hellinger distance between two
densities f and g defined on Rp, d2

H( f , g) = 1
2

∫
Rp(
√

f (x) −
√

g(x))2dx, and the Kullback-

Leibler divergence between two densities f and g defined on Rp, KL( f , g) =
∫

Rp log
(

f (x)
g(x)

)
f (x)dx.

Theorem 2.1.1. Let y = (y1, . . . , yn) be the observations, arising from a density f ⋆. Let BΛ ⊂ B as
defined in (2.2)., and the collection of modelsFΛ = (FB)B∈BΛ . We denote by f̂B the maximum likelihood
estimator for the model FB. Let τ > 0, and for all B ∈ B, let fB ∈ FB such that:

KL( f ⋆, fB) ≤ 2 inf
f∈FB

KL( f ⋆, f );

fB ≥ exp (−τ) f ⋆. (2.3)

Then, there exists some absolute constants κ and Coracle such that whenever

pen(B) ≥ κ
DB

n

[
2c2 + log

(
p4

DB(
DB
n c2 ∧ 1)

)]

for every B ∈ B, with c =
√

π +
√

log(3
√

3 λM
λm

), the random variable B̂ ∈ BΛ such that

B̂ = argmin
B∈BΛ

{
− 1

n

n

∑
i=1

log( f̂B(yi)) + pen(B)

}

exists and, moreover, whatever the true density f ⋆,

E(d2
H( f ⋆, f̂B̂)) ≤ CoracleE

[
inf

B∈BΛ

(
inf

f∈FB
KL( f ⋆, f ) + pen(B)

)]
+

1∨ τ

n
p log(p). (2.4)
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This theorem is deduced from an adaptation of a general model selection theorem for maxi-
mum likelihood estimator developed by Massart (2007). To use this theorem, the main assump-
tions to satisfy are the control of the bracketing entropy of each model in the whole collection of
models and the construction of weights for each model to control the complexity of the collec-
tion of models. To compute the weights, we use combinatorics arguments. The control of the
bracketing entropy is a classical tool to bound the Hellinger risk of the maximum likelihood es-
timator, and has already been done for Gaussian densities in Genovese and Wasserman (2000)
and Maugis and Michel (2011).

The assumption on the true density f ⋆ (2.3) is done because we consider a random subcol-
lection of models FΛ from the whole collection of models F . Thanks to this assumption, we
use the Bernstein inequality to control the additional randomness. The parameter τ depends
on the true unknown density f ⋆ and cannot be explicitly determined for this reason. We could
do some hypothesis on the true density f ⋆ to be able to explicit τ but we choose not to do it:
e.g. under the assumption that the Kullback-Leibler divergence and the Hellinger distance are
equivalent, we can explicitly determine τ. Note that the parameter τ only appears in the rest
term r = 1∨τ

n p log(p) and not on the penalty term pen(B). Therefore, we do not need to explicit
τ to select a model.

We remark that the Hellinger risk is upper bounded by the Kullback-Leibler divergence
in (2.4). For this reason, the result (2.4) is not exactly an oracle inequality and is called an
oracle type inequality. However, the use of the Kullback-Leibler divergence and the Hellinger
distance is common for model selection theorem for Maximum Likelihood Estimator: e.g. The-
orem 7.11 in Massart (2007). Moreover, the Kullback-Leibler divergence is comparable to the
Hellinger distance under some assumptions. Under these assumptions, the result (2.4) is ex-
actly an oracle inequality.

The collection of models (2.1) is defined such that covariance matrices have bounded eigen-
values. These bounds are useful to control the complexity of each model by constructing a
discretization of this space. Every constant involved in (2.4) depends on these bounds. This
assumption is common in non-asymptotic model selection framework.

To complete this analysis, we provide a second theoretical guarantee. In contrast with Lebar-
bier (2005); Maugis and Michel (2011), we strengthen the oracle type inequality using a minimax
lower bound for the risk between the true model and the model selected. Note that in Gaus-
sian Graphical Models, lower bounds have already been obtained in other contexts (Bickel and
Levina, 2008; Cai et al., 2010).

In Theorem 2.1.1, we have proved that we select a model as good as the oracle model in
a density estimation framework. However, the bound has two extra terms: the penalty term
pen(B) and the rest, which give the rate of the estimator. Based on Theorem 2.1.1 only, we
do not know if the rate is as good as possible. The following theorem lower bounds the risk
by a rate with the same form as the upper bound (seen as a function of n, p and DB), which
guarantees that we obtain an optimal rate.

Theorem 2.1.2. Let B ∈ B. Consider the model FB defined in (2.1), and DB its dimension. Then, if we
denote Cminim = e

4(2e+1)2(8+log(λM/λm))
, for any estimator f̂B of f ⋆ one has

sup
f ⋆∈FB

E(d2
H( f̂B, f ⋆)) ≥ Cminim

DB

n

(
1 + log

(
2λM p(p− 1)

DB

))
.

To obtain this lower bound, we use Birgé’s lemma (Birgé, 2005) in conjunction with a dis-
cretization of each model, already constructed to obtain the oracle type inequality. We assume
that the parameters of the models in the collection (2.1) are bounded, which is not a strong
assumption. The constant involved is explicit.

Thanks to Theorems 2.1.1 and 2.1.2, we upper bound and lower bound the Hellinger risk,
proving that our procedure is adaptive minimax. Note that the model selection procedure
is optimized for density estimation and not for edge selection: the Hellinger distance and
Kullback-Leibler divergence measure the differences between two densities from an estima-
tion point of view. In contrast, network inference focuses on edge selection. However, we point
out that the model selection procedure is only proposed in a specific context (n small), as a
preliminary step prior to edge selection . Although this preliminary step is not optimized for
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edge selection, it improves the network inference procedure as illustrated in simulated data. To
conclude, let recall that these results are non-asymptotic, which means that they hold for a fixed
sample size n, which is particularly relevant in a context where the number of observations n is
limited. The results are consistent with the point of view adopted in this work.

In practice, we consider a simpler version of the penalty term:

pen(B) = κ
DB

n
(2.5)

where κ is a constant depending on absolute constants and on the bounds λm and λM. Such
simplification has already been proposed by Lebarbier (2005). The extra term DB

n log
(

p(p−1)
DB

)
is useful to overpenalize the collection of models when it contains many models with the same
sizes. The simplification of the penalty term (2.5) is reasonable for moderate number of vari-
ables.

Subsequently, we note that the bounds λm and λM are non-tractable. For this reason, we
prefer to calibrate the constant κ in (2.5) from the data. This calibration is based on the slope
heuristic, originally proposed and proved in the context of heteroscedastic regression with fixed
design (Birgé and Massart, 2007; Baraud et al., 2009), and for homoscedastic regression with
fixed design (Arlot and Massart, 2009). In other contexts, the slope heuristic has been used and
have proven to be effective for multiple change point detection (Lebarbier, 2005), for variable
selection in mixture models (Maugis and Michel, 2011), for choosing the number of compo-
nents in Poisson mixture models (Rau et al., 2015) or for selecting the number of components
in discriminative functional mixture models (Bouveyron et al., 2015).

Baudry et al. (2012) have provided practical tools to calibrate the coefficient κ in (2.5) based
on the slope heuristic developed by Birgé and Massart (2007). Note that the detection of the
optimal B is easy to implement in practice and does not rely on heavy computation such as
cross-validation techniques.

Once we have detected the optimal block-diagonal structure of the GGM, network inference
is performed independently in each block using the graphical lasso (Friedman et al., 2008).

2.1.2 Stable network inference using single-linkage

In this section, we argue that the decomposition into two steps of the Graphical Lasso problem
enhances the stability of network inference. We experimentally illustrate this improvement
and theoretically prove that single linkage is stable, whereas other classical linkages, such as
average linkage, are not.

Theoretical result for the stability of the modular decomposition

In this section, we are interested in the stability of the hierarchical clustering, in the sense that,
if two samples are observed generated from the same distribution, we want to measure how
close are the two dendograms provided by the hierarchical clustering. Let (y1, . . . , yn) and
(y1, . . . , yi−1, ỹi, yi+1 . . . , yn) be two samples in Rp from the same multivariate normal distri-
bution with density ϕp(0, Σ) where Σj,j = 1 for all j ∈ {1, . . . , p}. We assume that observations
are standardized, and we focus on empirical correlations matrices.

A dendogram is an right-continuous application θ : [0, ∞) → P({1, . . . , p}) that defines a
nested family of partitions of {1, . . . , p} which starts with only singletons and ends with the
whole space. We denote Θp the set of all dendrograms on {1, . . . , p}.

We work here with ultrametrics, that are associated to dendrograms through a one-to-one
mapping. An ultrametric space (X, u) is a metric space which satisfies a stronger type of trian-
gle inequality: for all (x, x′, x′′) ∈ X3,

max(u(x, x′), u(x′, x′′)) ≥ u(x, x′′).

For a finite set {1, . . . , p}, we denote Up the set of all ultrametrics on {1, . . . , p}.
Theorem 9 in Carlsson and Mémoli (2010) gives a one to one correspondence

Ψ : Θp → Up
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where, for θ ∈ Θp, u = Ψ(θ) is the ultrametric on {1, . . . , p} defined for all (x, y) ∈ {1, . . . , p}2

by
u(x, y) = min {t ≥ 0 | x and y are in the same subset in the partition θ(t)} .

Note that u = Ψ(θ) is also, by definition, the cophenetic distance associated to the dendo-
gram θ: u(i, j) corresponds to the height at which stage i and j are merged together. We compare
those cophenetic distances for two dendograms using the following distance.

Definition 2.1.3. The distance dcoph is defined by, for two dendograms θ1, θ2 ∈ Θp, and their associated
ultrametrics u1 = Ψ(θ1) and u2 = Ψ(θ2),

dcoph(θ1, θ2) = max
1≤i,j≤p

|u1(i, j)− u2(i, j)|.

The inverse θ = Ψ−1(u) for u ∈ Up is given, for t ≥ 0, by θ(t) to be the partition obtained
from the equivalence relation ∼u,t where, for (x, y) ∈ {1, . . . , p}2,

x ∼u,t y ⇐⇒ u(x, y) ≤ t.

We will denote by Cp the complete simple graph with {1, . . . , p} as set of vertices and a path
in Cp with ν vertices will be encoded by a map η : {1, 2, . . . , ν} → {1, 2, . . . , p} where, for all
k ∈ {1, 2, . . . ν}, η(ν) yields the kth vertex of the path. We introduce in the next definition the
application uA and then show that it is an ultrametric on {1, . . . , p}.

Definition 2.1.4. Let A ∈ Rp×p be a symmetric matrix with positive nondiagonal entries, and zeros
on the diagonal. We define the following application.

uA : {1, . . . , p}2 −→ R

(i, j) 7−→


0 if i = j,

min
η a path from i to j in Cp

{
max

k
(Aη(k),η(k+1))

}
elsewhere.

If A ∈ Rp×p is a symmetric matrix with positive nondiagonal entries, and zeros on the diag-
onal, the application uA defines an ultrametric on {1, . . . , p}, and we denote by θA = Ψ−1(uA)
the dendrogram associated to the ultrametric uA.

Remark that, if the matrix A is associated to a distance d, the dendogram θA is exactly the
one obtained by the single linkage hierarchical clustering with the distance d (see Carlsson
and Mémoli (2010, Corollary 14)). One can particularly use A = 1− |S1|, with S1 the sample
covariance matrix and 1 corresponds to the matrix with 1 for each coefficient, which is the one
constructed in the first step of the Graphical Lasso (Tan et al., 2015).

The main theoretical contribution of this section is the following theorem, which gives the
stability of the dendrogram constructed in the first step of the Graphical Lasso.

Theorem 2.1.5. Let two samples (y1, . . . , yn) and (y1, . . . , ỹi, . . . , yn) where ỹi ∼ Y and are iid, and
S and S̃ the corresponding sample covariance matrices. Then, for α ∈ (0, 1), with probability 1− α,

dcoph(|θ1−|S||, θ1−|S̃|) ≤
2p

(n− 1)
√

α
.

Asymptotically, the two collections of modules detected by the Graphical Lasso on two
samples where only one observation differs, varying the regularization parameter λ, are the
same. This means that the single linkage used in the first step of the Graphical Lasso is a good
choice, with respect to the stability of the collection of models that is considered.

Similarly to Carlsson and Mémoli (2010, Remark 17), we can show that the complete linkage
and the average linkage are unstable: small perturbations of the matrix A may lead to large
perturbations of the corresponding ultrametric.
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Table 2.1: Stability of dendrograms (measured with the normalized distance cophn and its stan-
dard deviation in parenthesis) using hierarchical clustering with several linkages and ARI be-
tween the clusters get by hierarchical clustering using several linkages and several model se-
lection criterion. Best results are bolded.

AL CL ML SL WL
cophn 0.81 (0.08) 0.91 (0.05) 0.85 (0.06) 0.59 (0.12) 1.01 (0.10)
ARI 2 0.10 0.02 0.05 0.09 0.78

SH 0.49 0.32 0.44 0.57 0.37
BIC 0.26 0.11 0.17 0.39 0.27

Experiments

In the main paper, we illustrated the stability of dendrograms using hierarchical clustering
with varying linkages (Theorem 2.1.5), the stability of clusters determined by cutting the den-
drogram with a model selection criterion, and the stability of network inference on simulated
data and two real datasets. Here, we focus on the BRCA gene expression dataset for breast
cancer patients, measured with RNA-Sequencing and generated by the TCGA Research Net-
work. The data, downloaded from TCGA portals using the TCGA2STAT tool Wan et al. (2015),
consists of 1212 samples and 9191 genes. We focus on the 200 most variable genes, constructing
17 batches of 70 samples each, resulting in 1190 observations.

Stability of hierarchical clustering: which linkage method? In this section, we validate the
theoretical results from Section 2.2.2. We compare the stability of dendrograms generated by
different hierarchical clustering linkage methods: average (AL), complete (CL), McQuitty (ML),
single (SL), and Ward (WL). The measure used is the distance introduced in Definition 2.1.3,
which we normalize to facilitate the analysis: for two matrices A1, A2, and their associated
dendograms θA1 , θA2 ,

dN
coph(θA1 , θA2) = max

1≤i,j≤p

∣∣∣∣ uA1(i, j)
max(uA1)

−
uA2(i, j)

max(uA2)

∣∣∣∣ .

Table 2.1 shows the stability of dendrograms for generated data, BRCA, and equities, with
normalized distance and standard deviation. In the BRCA dataset, SL shows the highest stabil-
ity, indicating robustness for biological data with high sample variability.

Next, we cut the dendrograms to focus on clustering, treating this as a model selection
problem using the Bayesian Information Criterion (BIC, Schwarz (1978)) and the slope heuristic
(SH, Birgé and Massart (2001); Baudry et al. (2012)). Table 2.1 presents the Adjusted Rand Index
(ARI) for clusters derived from different linkage methods and model selection criteria, where
an ARI of 1 indicates a perfect match. SL and WL are the most competitive, with WL being the
most stable but not sparse, followed closely by SL combined with SH.

These results show that the choice of linkage method and model selection criterion signifi-
cantly impacts clustering stability and accuracy, with SL and SH generally providing the most
stable results.

Stability of inferred networks In this section, we evaluate the stability of networks inferred
by classical methods using the normalized Hamming distance between two graphs G1 and G2,
with adjacency matrices A1 and A2:

dH(G1, G2) =
2∥A1 − A2∥1

∥A1∥1 + ∥A2∥1
.

This metric measures the difference between two graphs, normalized by the total number of
edges. We also report the density of the inferred graphs and the CPU time required for compu-
tations.

We compare the following Graphical Lasso-based strategies:
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Table 2.2: Performance on BRCA. We compare the density, the performance in stability (eval-
uated by the normalized Hamming distance Hamm) and the computation time (evaluated by
the CPU time).

1 step BIC EBIC STARS ESCV BL SS
Dens 0.05 0.00 0.09 0.00 0.01 0.00

Hamm 0.19 0.00 0.20 0.00 0.02 0.01
CPU 73 73 1621 971 1071 7919

2 steps SL-SHBIC SL-SHEBIC SL-SHSTARS SL-SHESCV SL-SHBL AL-2sparse
Dens 0.02 0.02 0.01 0 0.01 0.26

Hamm 0.04 0.04 0.02 0 0.01 0.68
CPU 118 14 250 560 2372 2

• One-step Graphical Lasso methods, where the regularization parameter is selected by
BIC, EBIC (with γ = 0.5), STARS and ESCV.

• Stabilized methods based on the one-step Graphical Lasso: BoLasso (BL), Stability Selec-
tion (SS)

• Two-step Graphical Lasso methods: based on single linkage, cut with the slope heuristic,
and with regularization parameter selected by BIC, STARS, ESCV, and BoLasso1 within
each module; or mimicking CGL based on average linkage with 2 clusters, where in each
module the sparser model is selected.

Table 2.2 presents the performance in terms of density, normalized Hamming distance (Hamm),
and computation time (CPU time in seconds).
For one-step methods, ESCV and EBIC show very high stability (Hamming distance is zero)
but infer empty networks (density is zero), limiting their practical utility. STARS outperforms
BIC and BoLasso in network estimation but at higher computational costs. BoLasso and SS
show promise in stability and network estimation quality but are computationally intensive,
especially SS. For two-step methods, single linkage with SH improves stability and estimation
performance over one-step methods. CGL is generally unstable, confirming theoretical expecta-
tions about average linkage methods. Overall, two-step methods improve network estimation
and stability across both datasets, addressing limitations of one-step methods.

In conclusion, while one-step methods like STARS show competitive performance, espe-
cially in estimation accuracy, two-step methods, particularly those using single linkage with
appropriate selection criteria, offer superior stability and estimation quality at increased com-
putational costs. These findings underscore the importance of method selection based on both
performance metrics and computational feasibility in practical applications of graphical model
inference.

1Stability Selection was not run in the two-step Graphical Lasso methods due to high computational cost.
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2.2 Prediction using a network

In many applications, multivariate data have a graphical structure, and when using them to
predict a response, it is necessary to model this structure. Nonparametric methods have been
well-used because we don’t need to specify the model, but in some cases, it is important to get
an interpretable model, and thus parametric forms are preferred. Therefore, it is necessary to
incorporate the graphical model introduced in Section 2.1 into prediction methods, such as the
one introduced in Chapter 1. In this section, we discuss two contributions that are completely
driven by the biological application. The analysis of multivariate biological data is a challeng-
ing task, and extensive efforts have been made to provide a wide range of methods to extract
information from the data. Observing the data, this network structure is inherent and should
be modeled. We do not pretend here to propose generic method that can be used for general
datasets, but we argue that the model has been well specified to the data, detail in this section
how, and provide interpretable tools to engage the discussions with biologists. We do not pre-
tend here to propose generic methods that can be used for general datasets, but we argue that
the model has been well specified to the data, and we detail in this section how, and provide
interpretable tools to engage in discussions with biologists.

The first contribution is answering a regression task. We aim to predict a quantitative phe-
notype (namely ecophysiological traits) from biomarkers (genotypes of dent maize), using a
dataset published in Blein-Nicolas et al. (2020). It is known that the link function relating
the quantitative trait to explanatory variables is potentially complex and therefore nonlinear
(Torres-Garcı́a et al., 2009), while biologists need interpretable models to understand and an-
alyze the prediction. Additionally, in omic data, it is known that biological entities interact
through an unknown module-structured regulatory network Barabási et al. (2011), and no
method addresses the regression problem while integrating the regulation network between
predictors. We propose in Section 2.2.1 a method to predict a multivariate continuous response
from a large set of covariates that are correlated through a modular structure.

The second contribution is a classification task. We aim to predict if a patient has NASH
(Non-Alcoholic Steatohepatitis) from mid-infrared spectra. Non-Alcoholic Fatty Liver Disease
(NAFLD) is a leading cause of liver disease in Western countries, affecting about 24% of the
population (Younossi et al., 2018a) and progressing to the more severe NASH. Diagnosing
NASH is challenging due to its asymptomatic nature and the need for invasive liver biopsies,
with no current consensus on non-invasive diagnostic methods (see e.g. Younossi et al., 2018b).
Mid-infrared spectroscopy offers a molecular fingerprint of body fluids and holds potential for
predicting and understanding disease consequences. However, mid-infrared spectra, repre-
senting absorbance of biological samples over various wavelengths, present several statistical
challenges: high-dimensional framework due to the functional aspect of spectra, graph struc-
ture among the observations of the spectra, and inter-individual variability due to external or
metabolic factors related to the pathology. We propose in Section 2.2.2 a method to predict a
binary response (having NASH or not) from a large set of covariates that are correlated.

2.2.1 Nonlinear network-based quantitative prediction from biological data

Quantitatively predicting phenotypic variables using biomarkers is challenging for several rea-
sons. Biological observations might be heterogeneous, reflecting different mechanisms, and the
biomarkers used for prediction can be highly correlated due to unknown regulatory networks.
In this section, we present a novel approach to predict multivariate quantitative traits from bio-
logical data, addressing both issues. The proposed model not only performs well in prediction
but is also fully parametric, with clusters of individuals and regulatory networks, facilitating
downstream biological interpretation.

A network-based prediction model

Consider a multivariate response Y ∈ RL and a set of covariates X ∈ RD. To capture the
nonlinear relationship between the response and covariates and to model heterogeneous popu-
lations, we approximate the regression function with a mixture of K affine regression functions
considered as several clusters. The latent variable Z describes cluster membership: Zi = k if
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the individual i ∈ {1, . . . , n} originates from cluster k ∈ {1, . . . , K}. Then, we define the direct
regression with parameter (A∗k , b∗k , c∗k Σ∗k , Γ∗k )1≤k≤K by

Yi = (A∗k Xi + b∗k + εi)1Zi=k

εi|Zi = k ∼ NL(0, Σ∗k )

Xi|Zi = k ∼ ND(c
∗
k , Γ∗k ).

If D is large, the least square estimator associated to this model is not identifiable, and one can
relate to the corresponding inverse regression with parameter (Ak, bk, ck, Σk, Γk)1≤k≤K, intro-
duced in Section 1.1.1:

Xi = (AkYi + bk + ei)1Zi=k

ei|Zi = k ∼ ND(0, Σk)

Yi|Zi = k ∼ NL(ck, Γk).

The joint distribution of (Y, X) is then a finite mixture of multivariate Gaussian distributions.
This model is directly inherited from GLLiM, the model developed in Deleforge et al. (2015).
Using the inverse regression trick means that we estimate the inverse regression parameters
(Ak, bk, ck, Σk, Γk)1≤k≤K and use the parameters (A∗k , b∗k , c∗k , Σ∗k , Γ∗k )1≤k≤K in the regression of
interest for prediction.

There are many covariates compared to the potentially low number of individuals in each
cluster, requiring the estimation of numerous parameters, especially covariance matrices. Ad-
ditionally, biomarkers such as proteins or genes interact through unknown regulatory networks
linked to the phenotypic response. This implies that, conditionally on the phenotypic response,
each variable interacts with only a few others, forming small modules of correlated variables.
The matrix Σk represents the residual covariance of the covariates X conditionally on Y for the
cluster k ∈ {1, . . . , K}, then we assume that Σk has a block-diagonal structure, up to a permuta-
tion. Interestingly, this leads to a decomposition of Γ∗k into a sum of a block-diagonal matrix Σk

and a low rank matrix described by AkΓ1/2
k . For a given cluster k ∈ {1, . . . , K}, we decompose

Σk into Gk blocks: for the cluster k ∈ {1, . . . , K},

Σk(Bk) = Pk


Σ
[1]
k 0 . . . 0
0 Σ

[2]
k . . . 0

0 0
. . . 0

0 0
. . . Σ

[Gk ]
k

 P−1
k ;

where d[g]k is the set of variables into the gth group, for g ∈ {1, . . . , Gk}, #{d[g]k } the number

of variables in the corresponding set, Bk = (d[1]k , . . . , d[Gk ]
k ), Pk corresponds to the permutation

matrix in cluster k, and Σ
[g]
k ∈ S

++

#{d[g]k }
(R) corresponds to the residual correlations between the

#{d[g]k } variables in group g ∈ {1, . . . , Gk}, with S++
d (R) denotes the space of positive definite

matrices of size d with real entries. Remark that each set of groups is specific to each cluster of
individuals.

Using the inverse regression trick gives the identifiability of the model (up to label switch-
ing), both as a mixture of linear regressions with Gaussian distributions and as a sparse resid-
ual covariance matrix model in the inverse regression. Notice that if one wants to estimate
the model with (Γ⋆

k )1≤k≤K decomposed into sparse + low rank, the problem is ill-posed and
intractable (see Chandrasekaran et al. (2011); Candès et al. (2009) for some general solution).

The prediction of a new response Ŷn+1 from a new covariate x̂n+1 is computed afterwards
by a linear combination of the linear models associated to each cluster such as we have:

Ŷn+1 = E(Yn+1|Xn+1 = xn+1) =
K

∑
k=1

w∗k (xn+1) (A
∗
k xn+1 + b∗k )

w∗k (x)=
π∗k φD(x; c∗k , Γ∗k )

∑K
j=1 π∗j φD(x; c∗j , Γ∗j )

, for k = 1, . . . , K.
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We name this novel method BLLiM for Block diagonal covariance for Gaussian Locally Linear
Mapping.

Estimation through an EM algorithm For a fixed block-diagonal structure described by B =
(B1, . . . , BK) and a fixed number of clusters K, we consider the maximum likelihood estima-
tion for the parameters. The framework introduced above has the advantage that estimation
of parameters (ck, Γk,Ak, bk, Σk(Bk))1≤k≤K is tractable by an Expectation-Maximization (EM)
algorithm, introduced in Dempster et al. (1977). Details are provided in the main paper.

Construction of the collection of models As BLLiM involves estimating both the number
of clusters K and the network structure of covariates defined by B = ((d[g]k )1≤g≤Gk )1≤k≤K, we
reformulate the problem as a model selection issue. The number of clusters K varies within a
candidate set K, bounded by Kmax, so we focus on a finite set K ⊂ {1, 2, . . . , Kmax}.

The network structure B varies within a candidate set B, representing partitions of the co-
variates indexed by {1, . . . , D} for each cluster of individuals. Due to the large cardinality of
B (Bell number), we consider a moderately size subcollection B̃. We use hierarchical clustering
with single linkage on the empirical correlation matrix of predictors, computed separately for
each cluster, resulting in at most D models per cluster, ranging from one set with D variables
to D sets with singletons.

This construction of model collection occurs once during initialization, allowing approxi-
mation of the block-diagonal structure without re-estimating the model collection at each EM
algorithm step, which drastically reduces the computation time.

Model selection Varying K ∈ K the number of clusters and B ∈ B̃ the block structure, we
select a model using a penalized likelihood criterion of the form:

(K̂, B̂) = argmin
K∈K,B∈B̃

{
− 1

n

n

∑
i=1

log( f(K,B)(xi|yi)) + κ∆(K,B)

}
;

where f(K,B)(.|.) is the likelihood of BLLiM model as follows:

f(K,B)(x|y) =
K

∑
k=1

πk φL(y; ck, Γk)

∑K
j=1 πj φL(y; cj, Γj)

φD(x;Aky + bk, Σk(Bk));

and ∆(K,B) is the number of parameters of the model such as:

∆(K,B) = K
(

L +
L(L + 1)

2
+ D(L + 1) + 1

)
+

K

∑
k=1

Gk

∑
g=1

#{d[g]k }(#{d
[g]
k } − 1)

2
− 1.

The classical AIC (Akaike, 1974) uses κ = 2, BIC (Schwarz, 1978) sets κ = log(n), and the slope
heuristic (Birgé and Massart, 2001; Arlot, 2019) proposes to infer it in a data-driven manner.
The slope heuristic is particularly well-suited for high-dimensional contexts, because it has
theoretical non-asymptotic guarantees and because κ is adapting with respect to the data.

However, this optimization problem is costly, as we have to test every combination of K ∈
K, B ∈ B̃. We propose in this section to decompose it in a nested way, with coefficients κB
and κK potentially different. First, K is fixed and the block structure is selected using slope
heuristics:

B̂K = argmin
B∈B̃

{
− 1

n

n

∑
i=1

log( f(K,B)(xi|yi)) + κB∆(K,B)

}
for each K ∈ K.

At last, the number of clusters K is estimated in the same manner:

K̂ = argmin
K∈K

{
− 1

n

n

∑
i=1

log( f(K,B̂K)
(xi|yi)) + κK∆(K,B̂K)

}
.
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Table 2.3: Errors computed by 10-fold cross validation for the prediction of ecophysiological
traits late leaf area (LAl) and water use (WU) (Prado et al., 2018) from the proteomic data from
Blein-Nicolas et al. (2020). Mean and standard deviation are computed over the cross validation
process.

LAl.WD WU.WD
mean 0.00193 (0.00322) 0.264 (0.427)
MARS (Friedman, 1991) 0.00163 (0.00364) 0.363 (0.619)
GLLiM (Deleforge et al., 2015) 0.00090 (0.00148) 0.146 (0.195)
BLLiM 0.00077 (0.00130) 0.128 (0.191)
PLS 0.00083 (0.00160) 0.121 (0.165)
RF 0.00090 (0.00157) 0.151 (0.229)
SVM 0.00090 (0.00171) 0.122 (0.166)

Figure 2.1: Response for each cluster and absolute value of the regression coefficients (top).
Each color represents a cluster (red for cluster 1, blue for cluster 2). Modules of proteins (nodes)
detected for each cluster of individuals (bottom). The name of the protein is written on each
node. The edges correspond to interactions between proteins.
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Experimental validation: application on drought-related traits in maize

We illustrate our model’s performance and interpretability on the genetic and molecular bases
of maize drought-responsive traits (Prado et al., 2018) and leaf proteins (Blein-Nicolas et al.,
2020). This study includes 254 genotypes of dent maize, grown under two watering conditions,
and phenotyped for seven ecophysiological traits (Prado et al., 2018). Leaf samples from the
same plants were analyzed by proteomics, quantifying 2055 proteins (973 continuous and 1082
counting data) (Blein-Nicolas et al., 2020). For our analysis, we focused on two ecophysiologi-
cal traits (LAl and WU) and the continuous protein data under water deficit conditions. After
removing missing data, our dataset consisted of 233 maize genotypes (n = 233) with measure-
ments for both traits (L = 2) and proteins (D = 973).

We applied the BLLiM procedure, testing clusters K = {1, 2, 3}. Increasing clusters led
to empty ones, so we used BIC for selection instead of the slope heuristic due to insufficient
data points for calibration. For initialization, we reduced analysis to proteins selected by Lasso
within each cluster, resulting in D = 24 variables, addressing the high-dimensionality of bi-
ological data. Our prediction strategy was compared with MARS, RF, SVM, and PLS using
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10-fold cross-validation, with the mean as a baseline error measure. Predictive performance
was evaluated by RMSE for each response.

Results in Table 2.3 show that only MARS performed worse than or similar to the mean.
Model-free methods like RF and SVM performed well, adapting to the dataset’s structure. Our
procedure achieved competitive prediction performance, similar to PLS, RF, and SVM. The
main drawback of model-free methods is their lack of interpretability, but the inferred model
by BLLiM is interpretable.

To approximate the nonlinear relationship between the phenotypic variable and the pro-
teomic data, BLLiM divides the individuals into two clusters of sizes 103 and 130. The re-
sponse values and regression coefficients are shown in Figure 2.1. There is no clear difference
in the mean levels of the responses between the clusters. The key difference lies in the link
between proteins and ecophysiological traits, as indicated by the regression coefficients. For
Cluster 1, proteins with high coefficients in predicting late leaf area (LAl.WD) are mainly asso-
ciated with heat shock and stress responses (e.g., GRMZM5G813217, GRMZM2G153815, GR-
MZM2G112165, GRMZM2G043291). These proteins have small coefficients for Cluster 2. The
partial correlations between proteins are also displayed in Figure 2.1. The two graphs are sim-
ilar, but in Cluster 1, heat shock response proteins GRMZM5G813217 and GRMZM2G153815
are connected, whereas they are not connected in Cluster 2. These findings suggest that un-
der water deficit, the genotypes can be distinguished by how stress response proteins relate to
drought-related traits, indicating different drought response strategies.

2.2.2 NASH’s prediction using mixture of logistic regression models

This project studies blood serum spectra from 395 morbidly obese patients, including 66 with
NASH, aiming to develop a statistical learning model for scoring each spectrum.

Our approach emphasizes the importance of accounting for individual variability, recogniz-
ing that metabolisms vary greatly due to lifestyle, diet, and medical history. Instead of fitting
patients to a rigid model, we decompose the cohort into reference profiles, or disease trajec-
tories (Ross and Dy, 2013), which summarize metabolic behaviors and provide valuable, in-
terpretable insights for diagnosis and treatment. We propose an intermediate approach where
the joint distribution of predictors and responses is modeled as a mixture, leveraging both
clustering in conditional distributions and predictor information. This approach allows for
direct calculation of posterior probabilities for new observations, independent of unobserved
responses. For the specific case of NASH disease data, a mixture of logistic regression models
is considered, assuming Gaussian covariates and utilizing the Expectation-Maximization (EM)
algorithm for inference with latent variables. Additionally, this project emphasizes the impor-
tance of sparse regression coefficients and variable selection, particularly using an ℓ1-penalized
likelihood approach. This method not only aids in accurate parameter estimation but also ben-
efits from theoretical guarantees within the mixture of regression framework (Khalili and Chen,
2007; Städler et al., 2010). Furthermore, the graphical lasso estimator (Friedman et al., 2008) is
employed to enhance precision matrix estimation, highlighting covariate dependencies while
reducing dimensionality.

Overall, the proposed method aims to estimate patient profiles and interpret molecular vari-
ables affecting NASH disease, leveraging advanced statistical techniques to derive meaningful
insights from complex biological data.

Penalized mixture of logistic regressions model with random design

We study (X, Y) ∈ Rp × {0, 1} where Y is binary and X consists of p quantitative covariates in
Rp. The conditional relationship f (y|X = x) between Y and X depends on a latent class variable
Z = (Z1, . . . , ZK) following a multinomial distributionM(1, π1, · · · , πK). Conditioned on Z, X
follows a Gaussian distribution, and Y is modeled using logistic regression. Parameters µk and
Σk, and βk describe the mean and the covariance for each cluster k. Moreover, given {Zk = 1},
the covariates X are related to the response variable Y through the logistic link function such as

logit
(

p(k)(X)
)
= XTβk,
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where logit : x 7→ log(x/(1− x)) and βk = (βk,1, . . . , βk,p) are the regression coefficients of the
generalized linear model in cluster k.

The marginal joint distribution of (X, Y) (unconditional on Z) is defined as a mixture of
logistic regression with a random design. In particular, the density is given by:

fY,X(y, x) =
K

∑
k=1

πk fY|{X,Z}(y;βk) fX|Z(x;µk, Σk). (2.6)

The parameters for this mixture density, denoted as ΦK = (π1, ..., πK,ϕ1, ...,ϕK), include πk
and ϕk = (µk, Σk,βk) for each cluster k.

This model, also introduced by Xu et al. (1995), is distinct from traditional finite mixture
regression models (see e.g Grün and Leisch, 2007; Khalili and Chen, 2007) due to its random
design framework. This framework allows for inference of cluster membership probabilities
(Hoshikawa, 2013) based on observed covariates and facilitates out-of-sample prediction, ad-
dressing issues like optimism bias in fixed-design regressions (Rosset and Tibshirani, 2019). For
a new observation x0, the prediction rule is:

E(Y0|X0 = x0) =
K

∑
k=1

P(Y0 = 1|Z0k = 1, X0 = x0)P(Z0k = 1|X0 = x0),

where Z0 = (Z01, ..., Z0K) is the latent variable associated with X0. Replacing both quantities
with their expressions in the joint mixture of logistic regressions framework, a predicted value
is given by

Ŷ0 = E(Y0|X0 = x0) =
K

∑
k=1

τ′0,k
exp(xt

0βk)

1 + exp(xt
0βk)

,

where τ′0,k = P(Z0k = 1|X0 = x0) =
πk fN (x0;µk, Σk)

∑K
ℓ=1 πℓ fN (x0;µℓ, Σℓ)

,

with fN ( · ;µ, Σ) being the multivariate Gaussian density with mean µ and covariance Σ.
Model (2.6) is akin to mixture of experts (MoE) models, as discussed in literature such as

Jacobs et al. (1991) and Yuksel et al. (2012), which emphasize prediction within a mixture frame-
work. In our model, the latent cluster variable Z follows a multinomial distribution, influencing
posterior probabilities as weights dependent on covariates. This can be viewed as a specific in-
stance of MoE using Gaussian forms in the gating mechanism (Yuksel et al., 2012).

Given a sample (xi, yi)i=1,...,n of n independent realizations of the random variables (X, Y),
the unknown parameters ΦK = (π1, ..., πK,ϕ1, ...,ϕK) are estimated by maximizing the likeli-
hood. Our work focuses on moderate-dimensional covariates X, where selecting relevant vari-
ables for predicting Y and estimating unstructured covariance matrices is challenging. We use a
penalized likelihood method with dual penalties: a Lasso penalty for clusterwise feature selec-
tion in logistic regressions, and a Graphical Lasso penalty (Friedman et al., 2008) for controlling
covariance matrix estimation in clustering. Lasso is chosen for its low generalization error in
generalized linear models (Tibshirani, 1996), although exploring alternative penalties is a po-
tential future direction. This leads to, for λk ≥ 0, ρk ≥ 0, for all k = 1, . . . , K,

lnL(y1, . . . , yn, x1, . . . , xn; ΦK)−
K

∑
k=1

λk∥βk∥1 −
K

∑
k=1

ρk∥Θk∥1, (2.7)

where ∥βk∥1 = ∑
p
j=1 |βk,j|, Θk = Σ−1

k is the precision matrix in the kth cluster and ∥Θk∥1

denotes the sum of the absolute values of the elements of Θk. The regularization constants λk
and ρk drive the amount of shrinkage on the parameters βk and Θk for every cluster k, k =
1, . . . , K. No structure is assumed within clusters, the regression coefficients and the precision
matrices may have different supports in each cluster. Moreover, variables that are correlated
conditionally to the others (encoded through Θ) in the Gaussian model are not necessarily
useful to predict the response Y, and those useful to predict Y are not necessarily correlated, so
no common structure is assumed.
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Penalized maximum likelihood estimation consists in maximizing the convex function (2.7)
with respect to parameters ΦK. In a latent variable framework, this objective is usually achieved
through an Expectation-Maximisation (EM) algorithm (Dempster et al., 1977). Details are pro-
vided in the main paper.

The tuning parameters λ = (λ1, ..., λK) and ρ = (ρ1, ..., ρK) control the regularization in pe-
nalized likelihood approaches, balancing between model complexity and data fit. Methods like
Generalized Cross-Validation (GCV, Fan and Li (2001); Khalili and Chen (2007)) and Bayesian
Information Criterion (BIC, Schwarz (1978) ) are used to select these parameters. While GCV
can be computationally intensive and prone to selecting irrelevant variables (Wang et al., 2007),
BIC offers a trade-off by penalizing the number of parameters in the model (for example Wang
et al., 2007; Khalili and Lin, 2013; Jiang et al., 2018; Lloyd-Jones et al., 2018). For a given number
of clusters K, the BIC is defined as

BIC(λ,ρ) = −2 lnL
(

y1, . . . , yn, x1, . . . , xn; Φ̂(λ,ρ)
K

)
+ ν(λ,ρ) ln(n),

with Φ̂(λ,ρ)
K the arguments of the maximum of the penalized log-likelihood function with tun-

ing parameters λ and ρ. The quantity ν(λ,ρ) counts the number of free parameters, correspond-
ing to the number of non-zero coefficients of the model.

The number of clusters K is a sensible parameter because it describes the heterogeneity of
the population. In an unsupervised setting, K is unknown and thus has to be estimated as well.
Besides variable selection, the BIC is also commonly used to determine the number of clusters
K in a mixture models framework (Keribin, 2000). For a given number of clusters K, the BIC is
defined as

BICK = −2 lnL(y1, . . . , yn, x1, . . . , xn; ˆ̂Φ(λ,ρ)
K ) + νK ln(n),

with ˆ̂Φ(λ,ρ)
K the maximum likelihood estimator restricted to the relevant variables and νK the

number of free parameters of the model estimated with K clusters. However, for model-based
clustering, Integrated Classification Likelihood (ICL, Biernacki et al. (2000)) is preferred over
BIC due to its incorporation of cluster separation via an entropy term. Finally, for predictive
purpose, the Akaike Information Criterion (AIC) is known to be more suitable (Shmueli, 2010).
With the previous notations, the AIC is defined as

AICK = −2 lnL(y1, . . . , yn, x1, . . . , xn; ˆ̂Φ(λ,ρ)
K ) + 2νK.

Experimental validation: the NASH data set

The dataset consists of 395 patients, including 66 with NASH (approximately 17%), from the
Nice hospital in France. It includes clinical variables and spectrometric measures from sera
samples. Spectrometric curves, reflecting the metabolic profile influenced by liver condition,
serve as molecular fingerprints. Experts selected specific curve portions relevant to metabolic
variations linked to liver conditions, known as spectral variables. The prediction model pri-
marily uses these spectral variables, while biological and clinical variables aid interpretation.

A model with 2 clusters was selected according to the AIC value. The proportions of each
cluster are 0.66 and 0.34. The proportion of diseased patients changes according to the cluster:
19 % in cluster 1 and 12 % in cluster 2.

Table 2.4 shows the prediction performance of various models, with PMLR without clus-
ters (denoted PLR) as the baseline. The PLMR-2 model, with two clusters, achieves the highest
AUROC (0.75) and classification rate (0.76), supported by the lowest AIC and BIC values, indi-
cating consistency between model selection metrics and cross-validation results. Its high nega-
tive predictive value suggests effective screening capabilities. Comparisons with PMLR-HA-2
(hard assignment) and PMLR-2-diag (diagonal covariance matrices) show that while hard as-
signment achieves similar AUROC and sensitivity, fuzzy assignment generally results in higher
specificity and classification rates. Sparse covariance matrices are crucial for optimal perfor-
mance, highlighting the complexity of modeling this dataset accurately.

Figure 2.2(left) illustrates the distribution of predicted scores relative to true class labels in
the validation set. The threshold for classifying NASH patients, chosen to balance sensitivity
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PMLR-2 PMLR-HA-2 PMLR-2-diag PMLR-3 PLR LR
AUROC 0.75 0.75 0.69 0.68 0.64 0.67
Se 0.77 0.77 0.77 0.85 0.62 0.69
Sp 0.76 0.58 0.64 0.5 0.62 0.7
NPV 0.94 0.93 0.93 0.94 0.89 0.92
PPV 0.38 0.26 0.29 0.25 0.24 0.31
CR 0.76 0.61 0.66 0.56 0.62 0.7

Table 2.4: Comparison of prediction performance across various methods applied to the NASH
dataset, evaluating metrics such as Area Under the Receiver Operating Characteristic (AU-
ROC), sensitivity (Se), specificity (Sp), negative predictive value (NPV), positive predictive
value (PPV), and classification rate (CR).

Figure 2.2: Left: Predicted scores from Penalized Mixture of Logistic Regression with 2 clusters
(PMLR) plotted against true class labels in the validation set. The red dashed line represents
the automatically determined threshold for classification. Middle and Right: Graphical mod-
els depicting cluster-specific relationships. Arrow colors indicate partial correlation (blue for
positive, red for negative) and edge widths reflect correlation strength. Node colors denote
regression coefficient values (blue for positive, red for negative) with intensity indicating mag-
nitude, while uncolored nodes signify coefficients of zero (irrelevant variables).

and specificity, is marked by a red dashed line, effectively separating NASH patients from
controls.

The graphical models derived from sparsely estimated precision matrices for each cluster
are shown in Figure 2.2(middle and right). Variables that are conditionally correlated in the
Gaussian model (encoded through Θ) are not necessarily predictive of the response variable Y.
For example, in Cluster 1, variables β1,15 and β1,16 have non-zero coefficients while [Θ1]15, 16 =
0, and β1,10 and β1,11 are zero despite [Θ1]10,11 ̸= 0. In Cluster 1, variables X2 to X11 form a
dense group, while in Cluster 2, two distinct groups are observed: X2, X3, X4, X6, X7, and X8,
and X1, X5, X12, X14, X17, and X19. These varying link patterns highlight different metabolic
mechanisms among patients. Node colors represent the coefficient values of each variable.
Cluster 1 has a sparse model with many coefficients near zero, while Cluster 2 shows more
extreme values, underscoring distinct metabolic profiles in each patient cluster.

The clusters identified by the selected model (PMLR-2) are characterized using clinical vari-
ables examined post hoc for interpretation. Analyzing variable distributions across clusters (de-
tails in the main paper) reveals distinct patterns in variables. Cluster 1, associated with higher
diabetes indicators and liver markers, suggests more severe liver complications compared to
Cluster 2. Importantly, there is no significant disparity in morphological variables (weight,
height, BMI), demonstrating the model’s ability to distinguish liver injury severity even among
physically similar patients.
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Chapter 3

Causal inference for time series

This chapter is the result of a close collaboration with Eric Gaussier (LIG), and collaborations with
Julyan Arbel (LJK), Gregor Goessler (LIG), Wilfried Thuillier (LECA), and the supervision of
Charles K. Assaad (PhD student), Daria Bystrova (postdoc student), Anouar Meynaoui (postdoc
student), Lei Zan (PhD student). The Python code associated to the methods has been developed
by Charles K. Assaada and Lei Zanb. Thanks to them!

• Identifiability of total effects from abstractions of time series causal graphs, C.K.
Assaad, E. Devijver, E. Gaussier, G. Goessler, A. Meynaoui, UAI 2024, link arxiv.

• Causal Discovery from Time Series with Hybrids of Constraint-Based and
Noise-Based Algorithms, D. Bystrova, C.K. Assaad, J. Arbel, E. Devijver, E.
Gaussier, W. Thuillier, TMLR, 2024, link.

• A Conditional Mutual Information Estimator for Mixed Data and an Associated
Conditional Independence Test, L. Zan, A. Meynaoui, C.K. Assaad, E. Devijver
and E. Gaussier, Entropy 2022, 24(9), link.

• Entropy-Based Discovery of Summary Causal Graphs in Time Series, C.K. Assaad,
E. Devijver and E. Gaussier, Entropy 2022, 24(8), link.

• Survey and Evaluation of Causal Discovery Methods for Time Series , C.K. Assaad,
E. Devijver and E. Gaussier, Journal of Artificial Intelligence Research, 73, 2022,
link.

• Discovery of Extended Summary Graphs in Time Series, C.K. Assaad, E. Devijver
and E. Gaussier, UAI 2022, link.

• A Mixed Noise and constraint-based Approach to Causal Inference in Time Series,
K. Assaad, E. Devijver and E. Gaussier, ECML PKDD 2021, link.

aand is available at https://github.com/ckassaad
band is available at https://github.com/leizan/CMIh2022
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Causality plays a central role in science and has captivated the attention of philosophers,
biologists, mathematicians and physicists, to name but a few. Embedded within the fabric of
language and our cognitive mechanisms, causality prompts us to inquire about the nature of
the world around us. Questions such as ”Why is it dark?” or ”What is the effect of exercise on
heart rate?” reflect our innate inclination to understand causal relationships. As Spirtes, Gly-
mour, and Scheines aptly argue, both the baby and the seasoned scientist endeavor to transform
observations into causal knowledge Spirtes et al. (2001).

Causality is indeed crucial for explanatory purposes, as it allows us to understand how
effects are driven by their causes, regardless of any correlations they may have with other vari-
ables. Over the recent decades, experts from various domains, including philosophy, mathe-
matics, and computer science, have developed diverse models and methods to uncover causal
relationships from data. These advancements have empowered researchers to analyze causal
links effectively, leading to valuable insights and applications in diverse fields.

While the initial focus was on inferring causal relations from non-temporal data, there has
been a notable shift towards analyzing time series data in recent years. This shift has spurred
the development of tailored techniques for temporal datasets, enabling researchers to address
complex real-world challenges. From healthcare to industrial applications, the ability to predict
outcomes, such as the effects of interventions, has become increasingly essential, underscoring
the growing significance of causal inference in contemporary research.

This chapter diverges somewhat from the format of previous chapters, as its content has
been restructured to enhance readability, minimize redundancy, and emphasize our contribu-
tions. The chapter stems from the CIFRE PhD theses of Charles Assaad and Lei Zan, which I
co-supervised with Eric Gaussier and with the company Easyvista, along with the postdoctoral
work of Anouar Meynaoui, conducted in collaboration with Charles Assaad, Eric Gaussier, and
Gregor Goessler. Additionally, an auxilary project from Charles’s PhD, conducted in collabora-
tion with Daria Bystrova, also a PhD student at that time under the supervision of Julyan Arbel
and Wilfried Thuillier, is presented in this chapter.
The organization of this chapter is the following:

• In Section 3.1, we provide background information to understand the problem of causal
inference for time series. We begin by outlining classical assumptions, delve into causal
discovery using constraint-based methods, discuss the necessary independence measures,
and explore the types of causal graphs relevant to time series analysis.

• In Section 3.2, we propose some contributions to estimate and test independence based
on mutual information. Particularly, Section 3.2.1 focuses on mixed data, a practical but
under-theorized area addressed in Lei Zan’s PhD thesis detailed in Zan et al. (2022).
Section 3.2.2 covers several independence measures tailored for time series, relevant to
Charles Assaad’s PhD thesis elaborated in Assaad et al. (2022a,b).

• In Section 3.3, we propose some contributions on causal discovery for time series. Build-
ing on previously introduced independence measures, we adapt the PC algorithm, a stan-
dard constraint-based method, to accommodate time series causal graphs. This work is
also detailed in Charles Assaad’s PhD thesis Assaad et al. (2022a,b, 2021). We also discuss
the literature, presented in details in a survey (Assaad et al., 2022c), and present some
experimental results.

• In Section 3.4, we present a contribution on the identifiability of total effects in time series
causal graphs. Specifically, we address scenarios where only partial knowledge is avail-
able to identify queries at specific timestamps. This corresponds to Anouar Meynaoui’s
postdoctoral research, and is detailed in Assaad et al. (2024).
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Figure 3.1: A confounder (left), a collider (middle) and a mediator (right). .

3.1 Background

3.1.1 Classical assumptions

Causal inference aims to construct a causal graph from observational data, where understand-
ing the relationship between a probability distribution and its graphical representation is piv-
otal. However, given the maxim ”correlation is not causation,” additional assumptions are
necessary to discern causal relations.

Firstly, let’s examine three fundamental causal structures depicted in Figure 3.1. The left
structure represents a confounder—a variable serving as a common cause for two others. In
the middle, we have a collider—a variable influenced by two unrelated factors. On the right is
a mediator. Without observing the common cause Xp in the confounder structure, one might
infer a spurious correlation and a causal link between Xq and Xr, as these variables are inde-
pendent only when conditioned on Xp. To mitigate such spurious correlations, one approach
is to assume the measurement of all common causes.

Definition 3.1.1 (Causal Sufficiency, Spirtes et al. (2001)1). A set of variables is said to be causally
sufficient if all common causes of all variables are observed.

Under the assumption of causal sufficiency, most of the causal discovery algorithms assume
that the causal structure can be represented by a Directed Acyclic Graph (DAG) where directed
edges signify relationships from causes to effects. The absence of an edge between two variables
implies their (conditional) independence. Whenever a probability distribution can be factorized
according to a given DAG, we say that the DAG and the probability distribution are compatible.
The relationship between the (conditional) independence or dependence of variables and the
topology of the graph, given compatible graphs and probability distributions, is grounded in
the concept of d-separation, initially introduced within the framework of Bayesian networks.

Definition 3.1.2 (d-separation, Pearl (1988)). If G is a DAG in which Xp and Xq are two vertices
and XR is a set of vertices, then Xp and Xq are d-connected by XR in G if and only if there exists an
undirected path U between Xp and Xq such that for every collider Xc on U, either Xc or a descendant of
Xc is in XR, and no non-collider on U is in XR. Otherwise, Xp and Xq are d-separated given XR.

The following theorem states a necessary and sufficient condition for a DAG and a proba-
bility distribution to be compatible.

Theorem 3.1.3 (Markov Condition, Pearl (2000)). A necessary and sufficient condition for a proba-
bility distribution to be compatible with a DAG G is that every variable be independent of all its nonde-
scendants (in G), conditional on its parents.

When interpreting the DAG causally, the parents of a variable correspond to its direct
causes, known as the Causal Markov Condition Spirtes et al. (2001). It’s important to note
that several DAGs can represent the same set of conditional independencies and be compatible
with the same probability distribution. To address this challenge, two additional conditions
have been introduced to constrain the graphs considered for a given probability distribution.
The first condition is the minimality condition, which mandates that the graph does not contain
dependencies absent in the observational data.

Definition 3.1.4 (Minimality Condition, Pearl (2000)). A DAG G compatible with a probability
distribution P is said to satisfy the minimality condition if P is not compatible with any proper subgraph
of G.

1All this chapter is restricted to this context, even though I did some work to relax this assumption (mainly based
on extending FCI Spirtes et al. (2001); Zhang (2008); Colombo et al. (2012)).
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The minimality condition is however not sufficient to restrict the set of possible causal struc-
tures, and we introduce the faithfulness assumption.

Definition 3.1.5 (Faithfulness, Spirtes et al. (2001)). We say that a graph G and a compatible proba-
bility distribution P are faithful to one another if all and only the conditional independence relations true
in P are entailed by the Markov condition applied to G.

Note that the minimality condition is weaker than faithfulness in the sense that faithful-
ness and Markov conditions together entail minimality, whereas both minimality and Markov
conditions do not always entail faithfulness.

3.1.2 Causal discovery with constraint-based methods

Constraint-based approaches exploit conditional independencies to construct a skeleton be-
tween variables. This skeleton is then oriented according to a set of rules that define constraints
on admissible orientations. Central to these approaches is the notion of v-structures (Figure 3.1
(right)), or colliders, as these are the only structures which can be oriented without ambiguity.

Under causal sufficiency (Assumption 3.1.1), the underlying causal graph is typically repre-
sented by a DAG, but multiple DAGs can encode the same set of conditional independencies.
For example, the models in Figure 3.2, borrowed from Verma and Pearl (1991), represent the
same independence relation: Xp |= Xq|Xr. This leads to the concept of Markov equivalence
class which corresponds to a set of DAGs that encode the same set of conditional indepen-
dencies. Verma and Pearl (1991) have shown that two DAGs are Markov equivalent if and
only if they have the same skeleton and v-structures. Within an equivalence class of DAGs,
Andersson et al. (1997); Chickering (2002) introduced the completed PDAG (CPDAG) as the
representation consisting of directed edges for every compelled edges (those participating in v-
structures or potentially forming new v-structures upon orientation changes), and undirected
edges for all other. A CPDAG uniquely represents a Markov equivalence class, making the goal
of constraint-based algorithms clear: construct the CPDAG from observational data represent-
ing the Markov equivalence class of the true causal graph.

One of the earliest constraint-based algorithm is the SGS algorithm Spirtes et al. (2001), suf-
fers from impracticality due to exponential growth in the number of conditional independen-
cies to be tested, especially challenging given the difficulty in computing such independencies
Shah and Peters (2020). Addressing this, the Peter-Clark (PC) algorithm Spirtes et al. (2001)
was introduced. Starting with a complete undirected graph G, PC algorithm evaluates de-
pendencies between all pairs of vertices, iteratively removing or retaining links based on their
independence status. It then assesses conditional independencies between dependent vertices,
progressively increasing the number of variables to condition on until a conditional indepen-
dence is found or all relevant sets of vertices have been considered. Once the skeleton has been
constructed, the algorithm applies series of rules Spirtes et al. (2001); Colombo and Maathuis
(2014), starting by identifying v-structures using the so-called origin of causality (Rule 0) and
repeating Rules 1-2-3 on the remaining undirected edges.
PC-Rules

0. For every triple Xp −Xr −Xq such that Xp and Xq are not adjacent and Xr /∈ Sepset(p, q),
orient the triple as Xp → Xr ← Xq.

1. In a triple Xp → Xq − Xr such that Xp and Xr are not adjacent, orient Xq → Xr.

2. If there exist a direct path from Xp to Xq and an edge between Xp and Xq, orient Xp → Xq.

3. Orient Xp → Xq whenever there are two paths Xp − Xr → Xq and Xp − Xs → Xq.
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The main weakness of the original PC algorithm is its dependency on the order of opera-
tions, making it inherently unstable. However, Colombo and Maathuis (2014) proposed a mod-
ification that measures all conditional independencies for a given cardinality before altering
links in the undirected graph, thereby eliminating order dependence.

From a theoretical perspective, this algorithm is both sound (all causal relations detected by
the rules are correct) and complete (all possible causal relations in the Markov equivalence class
are detected by the algorithm) Meek (1995); Andersson et al. (1997) within the set of Markov
equivalence graphs (Theorem 5.1 by Spirtes et al. (2001)). Its consistency has been discussed by
Spirtes et al. (2001); Robins et al. (2003): while uniform consistency cannot be achieved if the
model is only faithful, pointwise consistency is attainable. Kalisch and Bühlmann (2007); Zhang
and Spirtes (2002) provided assumptions which render the PC-algorithm uniformly consistent,
with the number of nodes and neighbors increasing in a limited way with respect to the sample
size.

3.1.3 Independence measure: estimation and test

At the core of constraint-based algorithms are conditional (in)dependence measures, crucial
for detecting relevant conditional dependencies. Numerous dependence measures have been
proposed in the literature (see Josse and Holmes (2016) for a recent survey), ranging from linear
models to more intricate approaches, each with distinct advantages and drawbacks, leading to a
lack of universal acceptance. A key requirement is the ability to consider conditional measures,
which is fundamental in causal graph analysis but poses a significant challenge in statistics.
Additionally, these measures must be accompanied by statistical tests to determine if the value
is significant.

Consider first the case of independent and identically distributed (iid) variables. Conditional
independence tests for categorical variables are well-established, with solutions such as the
Pearson’s χ2 test and the likelihood ratio test Tsamardinos and Borboudakis (2010). However,
testing testing conditional independence for continuous random variables presents greater dif-
ficulty Shah and Peters (2020). While (partial) correlation and its associated Fisher test are
commonly used for linear models with Gaussian variables due to their numerical simplic-
ity and theoretical clarity, such modeling assumptions may not hold in real-world scenarios.
Nonparametric conditional independence tests, which do not assume any specific functional
form between variables or data distributions, have gained popularity for their robustness.
Shah and Peters (2020) show that no conditional independence test can control type-I error
for all conditional independence cases, but their validity for a wide range of conditional inde-
pendence cases make them the popular choice. Methods based on kernels mean embedding,
such as the Hilbert-Schmidt independence criterion (HSIC, Gretton et al. (2007)) and its exten-
sion for conditional independence Fukumizu et al. (2007), as well as its refinement the Kernel
Conditional Independence Test (KCIT, Zhang et al. (2011)) and its approximation by random
Fourier features Strobl et al. (2019), have demonstrated validity for a wide range of scenarios.
However, the computational demands of kernel-based methods remain a drawback, despite
recent attempts to address this issue Jitkrittum et al. (2017); Zhang et al. (2018). Another cate-
gory of measures is based on conditional distributions, such as mutual information, which has
seen nonparametric testing methods developed to assess conditional independence efficiently
Berrett and Samworth (2019); Berrett et al. (2020), leveraging efficient entropy estimators de-
rived from nearest neighbor distances Berrett et al. (2019).

For time series data, adaptation of these measures and tests have been proposed, to account
for lagged dependencies by considering shifted time series. Granger causality, introduced by
Granger (1969), has significantly advanced our understanding of directional influence between
time series. Transfer entropy (TE), pioneered by Schreiber (2000), offers an alternative to lagged
mutual information, incorporating shared information from common history and input sig-
nals, and has found widespread application in various fields beyond physics. Amblard and
Michel (2013) proposed a survey between Granger causality and directed information theory,
and derive some links between derived measures.

We focus in this chapter on the mutual information for analyzing time series and mixed
data. To estimate entropy, two primary approaches have emerged. The first relies on kernel-
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Figure 3.3: Different causal graphs that one can infer from three time series.

density estimates (Beirlant et al., 1997), tailored for quantitative data, while the second utilizes
on k-nearest neighbours Kozachenko and Leonenko (1987); Singh et al. (2003), suitable for both
qualitative and quantitative data. The latter is preferred for its natural adaptation to data den-
sity and minimal requirement for kernel bandwidth tuning. In this method, the distance to
the kth nearest neighbour is computed for each data point, with the probability density around
each point substituted into the entropy expression. When k is fixed and the number of points is
finite, each entropy term becomes noisy, introducing bias to the estimator. However, this bias
is distribution independent and can be corrected for (Singh and Póczos, 2016). Building on this
approach, Kraskov et al. (2004) proposed a mutual information estimator that extends beyond
the sum of entropy estimators. Subsequently, Frenzel and Pompe (2007) extended this work
to conditional mutual information for quantitative data. Determining whether the estimated
(conditional) mutual information value is sufficiently small to infer conditional (in)dependence
typically involves statistical independence tests. Permutation tests (Berry et al., 2018) are com-
monly employed to avoid assumptions about data distribution. However, standard permuta-
tion tests may inadvertently disrupt the dependence structure between variables. To address
this, Runge (2018b) proposed a local permutation test, preserving the dependence structure
between variables by restricting permutations within similar values of a conditioning variable.

3.1.4 Causal graphs for time series

Consider a d-variate time series X where each Xt at a fixed time t is a vector (X1
t , · · · , Xd

t ),
with Xp

t representing the p-th time series measurement at time t. There exist four ways (to our
knowledge) for representing time series through a causal graph. The first approach, termed
a full time causal graph (or infinite dynamic causal graph according to Malinsky and Spirtes
(2018)), depicts a complete graph of the dynamic system (see Figure 3.3(a)).

However, inferring full time causal graphs is often impractical as there usually is a single
observation for each time series at each time point. Instead, practitioners often rely on the
Consistency Throughout Time assumption (also referred to as Causal Stationarity by Runge
(2018a)), which states that all the causal relationships remain constant in direction throughout
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time. Under this assumption, the full time causal graph can be contracted, without loss of in-
formation, to yield a finite graph which we call window causal graph, depicted in Figure 3.3(b).
This representation captures causal relationships within a time window, with the window size
equaling the maximum lag τ relating time series in the full time causal graph.

The window causal graph can be condensed into a summary causal graph (also referred to
as a unit graph by Chu and Glymour (2008)), as depicted in Figure 3.3(d), albeit at the cost of
losing information regarding the specific time points at which causation occurs. In practice,
understanding causal relationships between time series as a whole is often adequate, without
requiring precise knowledge of the timing of these relationships. Note that since a summary
causal graph is a condensed representation of the full time causal graph, it may contain cycles.

However, in practice, even though we are not able to distinguish between different lags,
it is important to distinguish between instantaneous and lagged causal relations. So we have
introduced the extended summary causal graph in Assaad et al. (2022a), as depicted in Figure
3.3(c).

When considering temporal variables, the concept of temporal priority, dating back to
Hume (1738), is valuable. It asserts that a cause precedes its effects, imparting an asymmet-
ric temporal nature to the causality process. This concept aids in orienting causal relations,
especially when the chronological order of events is known. However, challenges arise when
the difference in time between events associated with different time series is not observed due
to low sampling frequencies. This can lead to the misperception of instantaneous causal rela-
tions between events occurring at different time points in observational time series, a challenge
we address in Section 3.3.

Note that for a fixed summary causal graph, there exists several extended summary causal
graph that are associated, and even more different full-time causal graph that can be contracted
to lead to the same summary causal graph. For a fixed abstract graph G (summary causal graph
or extended summary causal graph), we denote C(G) the class of compatible full time causal
graph.
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3.2 Independence measure: some contributions

When considering mixed data, very few estimators and tests exist in the literature. We intro-
duce in Section 3.2.1 an estimator and a related test taking into account both the qualitative and
quantitative dimension of a mixed vector (this work corresponds to Zan et al. (2022)). Then we
introduce several (conditional) dependence measures for time series, well-suited for summary
causal graph (CTMI, introduced in Assaad et al. (2022b) and TCE, introduced in Assaad et al.
(2021)) and for extended summary causal graph (GCE, introduced in Assaad et al. (2022a)).

3.2.1 Mutual information for mixed data

A standard approach to estimating (conditional) mutual information from mixed data involves
discretizing the data and approximating the distribution of the random variables with a his-
togram model defined on a set of intervals called bins (Scott, 2015b). Each bin represents a sin-
gle point for qualitative variables and consecutive non-overlapping intervals for quantitative
variables. Although smaller bins improve the approximation, the finite sample size necessitates
careful selection of the number of bins. To efficiently generate adaptive histogram models from
quantitative variables, Cabeli et al. (2020) and Marx et al. (2021) transform the problem into a
model selection problem, using a criterion based on the minimum description length (MDL)
principle.

More recently, Ross (2014) and Gao et al. (2017) introduced two approaches to estimate
mutual information for mixed data, however without any conditioning set. Following these
studies, Rahimzamani et al. (2018) proposed a measure of incompatibility between the joint
probability and its factorization called graph divergence measure and extended the estimator
proposed in Gao et al. (2017) to conditional mutual information, leading to a method called
RAVK. As ties can occur with a non zero probability in mixed data, the number of neighbours
has to be carefully chosen. Mesner and Shalizi (2020) extended FP (Frenzel and Pompe, 2007) to
the mixed data case by introducing a qualitative distance metric for non-quantitative variables,
leading to a method called MS. The choice of the qualitative and quantitative distances is a
crucial point in MS (Ahmad and Khan, 2019).

Hybrid conditional mutual information estimation Let us consider three mixed random vec-
tors X, Y and Z, where any of their components can be either qualitative (stacked in Xℓ, Yℓ, Zℓ)
or quantitative (stacked in Xt, Yt, Zt). Then, the conditional mutual information can be decom-
posed into termed conditioned on qualitative components:

I(X; Y|Z) =H(Xt, Zt|Xℓ, Zℓ) + H(Yt, Zt|Yℓ, Zℓ)− H(Xt, Yt, Zt|Xℓ, Yℓ, Zℓ)

− H(Zt|Zℓ) + H(Xℓ, Zℓ) + H(Yℓ, Zℓ)− H(Xℓ, Yℓ, Zℓ)− H(Zℓ). (3.1)

Conditioning with qualitative variables leads to a simpler estimation.
Consider a sample of size N denoted (xi, yi, zi)i=1,...,N . We estimate the qualitative entropy

terms of Equation (3.1) using histograms in which bins are defined by the Cartesian product
of qualitative values; and for conditional entropies of Equation (3.1) of quantitative variables
conditioned on qualitative variables, probabilities are estimated by their empirical versions and
conditional entropies are estimated using the nearest neighbour estimator (Singh et al., 2003)
on the sample points satisfying the conditioning set. Interestingly, the resulting conditional
mutual information estimator is asymptotically unbiased and consistent.

In the main paper (Zan et al., 2022), we compare experimentally our estimator, denoted
CMIh, with several estimators. The main competitor (Mesner and Shalizi, 2020) has a main
drawback as it gives the value 0, or close to 0, to the estimator in some particular cases discussed
in the main paper. Our proposed estimator does not suffer from this drawback as we do not
directly compare two different types of distances, one for quantitative and one for qualitative
data. The pure histogram method (Marx et al., 2021) performs well in terms of accuracy of the
estimator, but its computation time is prohibitive. Our estimator, which can be seen as a trade-
off between k-nearest neighbour and histogram methods, performs well, both in terms of the
accuracy of the estimator and in terms of the time needed to compute this estimator.
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Figure 3.4: Why do we need windows and lags? An illustration with two time series where X1

causes X2 in two steps (circles correspond to observed points and rectangles to windows). The
arrows in black are discussed in the text.

Testing conditional independence Once an estimator for mutual information has been com-
puted, one relies on statistical tests to conclude on the dependence or independence of the
involved variables, among which permutation tests are widely adopted as they do not require
any modelling assumption (Berry et al., 2018). We also focus on such tests here which emu-
late the behaviour of the estimator under the null hypothesis (corresponding to independence)
by permuting values of variables. Runge (2018b) showed that for conditional tests and purely
quantitative data, local permutations that break any possible dependence between X and Y
while preserving the dependence between X and Z and between Y and Z are to be preferred
over global permutations. Our contribution here has been to extend this method to mixed data.
Experimental results have shown that the local tests are better than the global one, and consid-
ered the mixed nature of the data is giving better performances.

3.2.2 Mutual information for time series

We present in this section some new mutual information measures whether time series are
(conditionally) dependent or not. We assume that all time series are aligned in time, with the
same sampling rate, but this as been relaxed in the corresponding papers. Without loss of
generality, time instants are assumed to be integers.

First, the following example illustrates why this is a complex task.

Example 3.2.1. Let us consider the following two time series defined by, for all t,

X1
t = X1

t−1 + ξ1
t ,

X2
t = X2

t−1 + X1
t−2 + X1

t−1 + ξ2
t ,

with (ξ1
t , ξ2

t ) ∼ N (0, 1). The corresponding full time causal graph is displayed in Figure 3.4. In order
to capture the dependencies between the two time series, one needs to take into account a lag between
them, as the true causal relations are not instantaneous, as done for example in Runge et al. (2019). A
window-based representation is also necessary to fully capture the dependencies between the two time
series. Indeed, as X2

t−1 and X2
t are the effects of the same cause (X1

t−2), it may be convenient to consider
them together when assessing whether the time series are dependent or not. For example, defining (over-
lapping) windows of size two for X2 and one for X1 with a lag of 1 from X1 to X2, as in Figure 3.4,
allows one to fully represent the causal dependencies between the two time series.

We propose several measures that will be used in Section 3.3 for causal discovery with time
series. More precisely, CTMI and TCE are well-suited for inferring a summary causal graph,
while GCE is distinguishing between instantaneous and lagged causal relations, being particu-
larly well-suited for inferring an extended summary causal graph.

Causal Temporal Mutual Information Let us consider d univariate time series X1, · · · , Xd and
their observations (Xp

t )1≤t≤Np ,1≤p≤d.

Definition 3.2.1. Let γmax denote the maximum lag between two time series Xp and Xq, and let the
maximum window size λmax = γmax + 1. The window-based representation, of size 0 < λpq ≤ λmax <

Np, of the time series Xp with respect to Xq, which will be denoted X(p;λpq), simply amounts to considering
(Np − λpq + 1) windows: (Xp

t , · · · , Xp
t+λpq−1), 1 ≤ t ≤ Np − λpq + 1. The window-based representation,

of size 0 < λqp ≤ λmax < Nq, of the time series Xq with respect to Xp is defined in the same way. A
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Figure 3.5: Example of conditional independence between dependent time series. Left, the con-
ditioning set contains one time series X3 in addition to the past of X1 and X2. Right, the con-
ditioning set contains two time series X3 and X4 in addition to the past of X1 and X2. Dashed
lines are correlations that are not causations, bold arrows correspond to conditioning variables.

temporal lag γpq ∈ Z compatible with λpq and λqp relates windows in X(p;λpq) and X(q;λqp) with starting
time points separated by γpq. We denote by C(p,q) the set of window sizes and compatible temporal lags.

Based on the above elements, we define the causal temporal mutual information between
two time series Xp and Xq as the maximum of the standard mutual information over all possible
compatible temporal lags and windows C(p,q), conditioned by the past of the two time series.

Definition 3.2.2. Consider two time series Xp and Xq. We define the causal temporal mutual information
between Xp and Xq as:

CTMI(Xp; Xq) = max
(λpq ,λqp ,γpq)∈C(p,q)

I(X(p;λpq)
t ; X(q;λqp)

t+γpq
|X(p;1)

t−1 , X(q;1)
t+γpq−1), (3.2)

where I represents the mutual information. In case the maximum can be obtained with different values
in C(p,q), we first set γ̄pq to its largest possible value. We then set λ̄pq to its smallest possible value and,
finally, λ̄qp to its smallest possible value. γ̄pq, λ̄pq, and λ̄qp, respectively, correspond to the optimal lag
and optimal windows.

Under consistency throughout time, CTMI satisfies the standard properties of mutual in-
formation, namely it is nonnegative, symmetric, and equals 0 iff time series are independent.
Thus, two time series Xp and Xq such that CTMI(Xp; Xq) > 0 are dependent. We now extend
the causal temporal mutual information by conditioning on a set of variables. Figure 3.5 illus-
trates two cases where the dependence between X1 and X2 are due to spurious correlations
originating from common causes. Conditioning on these common causes should lead to the
conditional independence of the two time series. This leads us to the following definition of the
conditional causal temporal mutual information.

Definition 3.2.3. Consider two time series Xp and Xq and a set XR = {Xr1 , · · · , XrK}. We define the
conditional causal temporal mutual information between Xp and Xq conditionet on XR as:

CTMI(Xp; Xq | XR) = I(X
(p;λ̄pq)
t ; X

(q;λ̄qp)
t+γ̄pq

|(X(rk ;λ̄k)
t−Γ̄k

)1≤k≤K, X(p;1)
t−1 , X(q;1)

t+γ̄pq−1). (3.3)

In case the minimum can be obtained with different values, we first set Γ̄k to its largest possible value.
We then set λ̄k to its smallest possible value.

Temporal Causation Entropy Causation entropy, introduced in Sun et al. (2015b), is an asym-
metric measure that detects the uncertainty reduction of the future states of Xq as a result of
knowing the past states of Xp given that the past of XR is already known, where R is a sub-
set of {1, · · · , d}. We extend the standard causation entropy measure to handle instantaneous
relations and lags bigger than one.

Definition 3.2.4 (Temporal causation entropy). Consider two time series Xp and Xq. We first define
the optimal lag γpq between Xp and Xq and (λpq, λqp) the optimal windows of Xp regarding Xq and of
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Xq regarding Xp respectively as:

γpq, λpq, λqp =argmax
γ≥0,λ1,λ2

h(Xq
t:t+λ2

| Xq
t−1, Xp

t−γ−1)− h(Xq
t:t+λ2

| Xp
t−γ−1:t−γ+λ1

, Xq
t−1),

where h denotes the entropy. The temporal causation entropy from Xp to Xq conditioned on a set XR =
{Xr1 , · · · , XrK} is given by:

TCE(Xp → Xq | XR) = min
Γri≥0, 1≤i≤K

h(Xq
t:t+λqp

| (Xri
t−Γpq|ri

)1≤i≤K, Xq
t−1, Xp

t−γpq−1)

− h(Xq
t:t+λqp

| (Xri
t−Γpq|ri

)1≤i≤K, Xp
t−γpq−1:t−γpq+λpq

, Xq
t−1),

where Γpq|r1
, · · · , Γpq|rK

are the lags between XR and Xq.

First, the lag between Xp and Xq is detected by maximizing the dependency between Xp

and Xq. As we measure the amount of information brought by the observations of one variable
on the observations of another variable, taking the maximum ensures that one does not miss
any possible information contributing to relating the two time series. In a second step, we find
the lags between (Xp, Xq) and XR that minimize the conditional dependency between Xp and
Xq conditioned on XR. Taking the minimum ensures that we search for the lags that break
the maximal dependence. Following the temporal priority principle, which states that causes
precede their effects in time, we also ensure while finding only nonnegative lags that Xp as well
as the conditional variables should precede in time Xq. If γ = 1 and λpq = λqp = 1, then the
temporal causation entropy is equivalent to causation entropy when the latter is conditioned
on the past.

Compared to CTMI, TCE is asymmetric, so it already distinguishes between a cause and its
effect.

Greedy causation entropy When considering extended summary causal graph, one should
measure the dependence between the present and the past. The following proposition gives a
characterization of this measure with the past.

Proposition 3.2.5. Consider two time series Xp and Xq. Let γ denote the maximum gap between a
cause Xp and its effect Xq. The following two propositions are equivalent:

(a) I(Xq
t ; Xp

t−γ1
, · · · , Xp

t−γK
) = 0, ∀K ≥ 1, ∀γ1 > · · · > γK ≥ 0,

(b) I(Xq
t ; Xp

t−γ:t) = 0.

The same equivalence holds for the conditional mutual information, using any conditional set.

To assess whether there exist causal relations between variables in the past and potential
effect in the present slices, we make use of the following greedy causation entropy2 which is
based on Prop. 3.2.5 and is asymmetric to reflect the specific role of the cause and the effect.
Relations between variables in the past and present slices are naturally oriented by temporal
priority.

Definition 3.2.6. Consider two time series Xp and Xq. The greedy causation entropy, denoted by GCE,
from Xp to Xq is defined by:

GCE(Xp → Xq) = I(Xq
t ; Xp

t−γ:t−1).

Denoting by XPr a set of m time series {XPr1 , · · · , XPrm
t } in the present slice and by XPa a set of ℓ time

series {XPa1
t− , · · · , XPaℓ

t− } in the past slice, the conditional greedy causation entropy furthermore takes
the form:

GCE(Xp → Xq|XPa, XPr) = I(Xq
t ; Xp

t−γ:t−1|X
Pa1
t− , · · · , XPaℓ

t− , XPr1
t , · · · , XPrm

t ).
2We call it greedy because it considers all past instants (up to γ) without trying to filter them.
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Because of Prop. 3.2.5, one can conclude that past instants of Xp do not directly cause Xq

iff there exists XPr = {XPr1
t , · · · , XPrm

t } and XPa = {XPa1
t− , · · · , XPaℓ

t− }, with m, ℓ ≥ 0, such that
GCE(Xp → Xq|XPa, XPr) = 0.

When considering an extended summary causal graph, for determining (in)dependencies
in the present slice, one can directly rely on the standard (conditional) mutual information.
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3.3 Causal discovery for time series: some contributions

Once we have a dependence measure between time series, we can use constraint-based meth-
ods to infer a causal graph. In this section, we first detail some propositions to infer a causal
graph for time series, and then provide a summary of the state-of-the-art (up to date in 2022, a
part of the survey Assaad et al. (2022c) used for illustration and comparison).

3.3.1 Proposed methods

PCTMI (with ERP) When inferring a summary causal graph, we do not have to consider all
the potential dependencies between two time series (which would be necessary for inferring a
window causal graph). Using the maximum over all possible associations is a way to summa-
rize all temporal dependencies, which ensures that one does not miss a dependency between
the two time series. Furthermore, conditioning on the past allows one to eliminate spurious
dependencies in the form of auto-correlation, as in transfer entropy (Schreiber, 2000). Interest-
ingly, CTMI can be related to a version of the probability raising principle (Suppes, 1970), which
states that a cause, here a time series, raises the probability of any of its effects, here another
time series, even when the past of the two time series is taken into account, meaning that the
relation between the two time series is not negligible compared to the internal dependencies of
the time series.

We consider a slightly different principle based on the causal temporal mutual information,
which we refer to as the entropy reduction principle. Let Xp and Xq be two time series with
window sizes λpq and λqp. We say that Xp is an entropic prima facie cause of Xq with delay

γpq > 0 iff I(X
(p;λpq)
t ; X

(q;λqp)
t+γpq

|Pt,t+γpq) > 0, which is equivalent to considering that the entropy
of Xq when conditioned on the past reduces when one further conditions on Xp.

In addition to the PC orientation rules, we introduce two new rules, which are based on the
notion of possible spurious correlations and the mutual information we have introduced. The
notion of possible spurious correlations captures the fact that two variables may be correlated
through relations that do not only correspond to direct causal relations between them (there
exists a path between them that neither contains the edge Xp − Xq nor any collider).

Interestingly, when two connected variables do not have possible spurious correlations, one
can conclude about their orientation using CTMI.

Proposition 3.3.1. Let us assume that we are given perfect conditional independence information about
all pairs of variables (Xp, Xq) in V given subsets S ⊆ V\{Xp, Xq}. Then, every non-oriented edge in
the CPDAG obtained by the above procedure corresponds to a prima facie cause and by, causal sufficiency,
to a true causal relation between the related time series. Furthermore, the orientation of an unoriented
edge between two nodes Xp and Xq that do not have possible spurious correlations is given by the
“direction” of the optimal lag in CTMI(Xp, Xq), assuming that the maximal window size is larger than
the longest lag γmax between causes and effects.

The following orientation rule is a direct application of the above proposition.

ER-rule 0 (Entropy reduction—γ ). In a pair Xp − Xq, such Xp and Xq do not have a possible
spurious correlation, if γ̄pq > 0, then orient the edge as: Xp → Xq.

Furthermore, we make use of the following rule to orient additional edges when the optimal
lag γ̄pq is null based on the fact that CTMI increases asymmetrically with respect to the increase
of λpq and λqp. This rule infers the direction of the cause by checking the difference in the
window sizes as the window size of the cause cannot be greater than the window size of the
effect.

ER-rule 1 (Entropy reduction—λ). In a pair Xp−Xq, such Xp and Xq do not have a possible spurious
correlation, if γ̄pq = 0 and λ̄pq < λ̄qp, then orient the edge as: Xp → Xq.

We call our method PCTMI. The output of the algorithm is a CPDAG version of the sum-
mary graph such that all lagged relations are oriented, but instantaneous relations are partially
oriented.
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PCGCE We make use of the PC algorithm to construct extended summary graphs from ob-
servational time series. The skeleton is constructed as in the PC algorithm, using (conditional)
GCE to measure the (conditional) dependence between Xp in the past slice to Xq in the present
slice, and classical (conditional) mutual information for the edges in the present slice. Orien-
tation is done using PC rules, the overall process being referred as PCGCE. The particularity
of this method is that it is the first one to discover an extended summary causal graph from
observational time series.

NBCB and CBNB We introduce two classes of algorithms, NBCB and CBNB, designed to
infer causal graphs from time series data by combining elements of noise-based and constraint-
based approaches. Hybrid frameworks like ours integrate methods from different families to
enhance graph inference by overcoming limitations inherent in individual algorithms. We relax
the faithfulness assumption required by constraint-based methods by adopting the adjacency
faithfulness assumption.

Assumption 3.3.2 (Adjacency Faithfulness, (Ramsey et al., 2006)). Let Gf = (Ef, Vf) be an FTCG.
If two nodes X and Y in Vf are adjacent in Gf, then they are dependent conditionally on any subset of
Vf\{X, Y}.

In the NBCB class of algorithms, we first construct a fully connected graph and orient lagged
relations based on temporal priority. Then, we determine the causal order among all instanta-
neous nodes using noise-based methods before testing conditional independences to prune the
causal graph.

For the CBNB class of algorithms, we determine the skeleton using conditional indepen-
dence tests and add temporal orientation. The causal order among instantaneous nodes is
established using a clever technique leveraging the knowledge of the skeleton.

Both classes of algorithms yield the true graph under perfect conditional independences.
We also explore their robustness against assumption violations.

When working with the summary causal graph, we employ TCE or partial correlation as
(conditional) independence tests when assuming linear (conditional) dependencies.

3.3.2 State-of-the-art

Table 3.1 displays the main characteristics of representative algorithms. As one can note, most
methods infer a window causal graph. Methods that directly aim at inferring a summary causal
graph may have advantage over methods that first infer a window causal graph when consider-
ing the summary graph only, being faster and directly aiming at solving a simpler problem. The
distinction on the type of graphs inferred is thus not a way to rank causal discovery methods;
it just reflects the fact that the objectives differ from one method to the other.

The detection of instantaneous relations is important from a practical point of view as the
difference in time between two events associated to two time series may not be observed if the
sampling frequencies of the time series are small. Roughly only half of the methods address this
particular problem3. Being able to detect relations with a gap greater than 1 is also important in
practical situations and only oCSE is restricted to a gap of 1. Methods that are not able to infer
self causes usually assume that self causes always exist, which seems reasonable in real-life
examples.

Regarding the type of underlying models, almost all methods rely on a particular model
(except constraint-based methods). Among the methods relying on a model, roughly half of
them rely on a linear model. Concerning ANLTSM, if the underlying model considered is non-
linear for observed variables, it is linear for hidden ones. Relying on a specific model can be
an advantage when the data considered arises from a similar model. It can be of course a
disadvantage when this is not the case. Lastly, as one can note, most models use few (less than
5) hyper-parameters, with the exception of TCDF which is based on deep neural networks.

This table serves as a guide to help choose the method that best fits the assumptions under-
lying the data.

3Note that the most recent version of PCMCI includes this possibility. We are discussing here the standard version.
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MVGC (Granger, 1969) S ✗ ✓ ✗ ✗ ✗ ✓ ✓ ✓
TCDF (Nauta et al., 2019) W ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✗

PCMCI (Runge, 2020) W F ✓ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✓
oCSE (Sun et al., 2015b) S F ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✓

PCGCE (Assaad et al., 2022a) E F ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✓
PCTMI Assaad et al. (2022b) S F ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✓

VarLiNGAM (Hyvärinen et al., 2008) W M ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓
TiMINo (Peters et al., 2013) S M ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✓

DYNOTEARS (Pamfil et al., 2020) W ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓

Table 3.1: Summary of the main characteristics of representative algorithms in all the families
used for illustration in this chapter. For causal graphs, S means that the method provides a
summary causal graph, W a window causal graph and E an extended summary causal graph;
F corresponds to faithfulness and M to minimality.
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Figure 3.6: Three SCGs and a total effect which is identifiable. Red and blue vertices in the
FTCGs represents the total effect we are interested in.

3.4 Causal reasoning in time series causal graph

We focus in this section on identifying from observational data the total effect of the singleton
variable Xt−γ on the singleton variable Yt, written P(Yt = yt|do(Xt−γ = xt−γ)) (as well as
P(yt|do(xt−γ)) by a slight abuse of notation), when the only knowledge one has of the underly-
ing DSCM consists in the ESCG or SCG derived from the unknown, true FTCG. Yt corresponds
to the response and do(Xt−γ = xt−γ) represents an intervention (as defined in (Eichler and
Didelez, 2007, Assumption 2.3)) on the variable X at time t− γ, with γ ≥ 0.

Context Each candidate FTCG proposes a particular decomposition of the true joint proba-
bility distribution which is given by the standard recursive decomposition that characterizes
Bayesian networks. Not all decompositions are however correct wrt the true probability distri-
bution P. In general, a total effect P(yt | do(xt−γ)) is said to be identifiable from a graph if it
can be uniquely computed with a do-free formula from the observed distribution (Pearl, 1995;
Perkovic, 2020). In our context, this means that the same do-free formula should hold in all
candidate FTCG so as to guarantee that it holds for the true one.

Definition 3.4.1 (Identifiability of total effects in ESCGs and SCGs). In a given ESCG or SCG G,
P(yt | do(xt−γ)) is identifiable iff it can be rewritten with a do-free formula that is valid for any FTCG
in the set of compatible graphs C(G).

One way to rewrite P(yt | do(xt−γ)) with a do free-formula is by finding an adjustment set
of variables for which:

P(yt|do(xt−γ)) = ∑
z

P(yt|xt−γ, z)P(z). (3.4)

Whenever a set of variables satisfy Equation 3.4, we call it a valid adjustment set. The standard
backdoor criterion allows one to obtain valid adjustment sets using the true FTCG. We provide
here another version of the backdoor criterion that allows us to find a valid adjustment set
given all candidate FTCGs without knowing which one is the true FTCG.

Definition 3.4.2 (Backdoor criterion over all candidate FTCGs). Let G = (V , E) be an ESCG
or SCG. A set of vertices Z in V satisfies the backdoor criterion over all candidate FTCGs relative to
(Xt−γ, Yt) if

(i) Z blocks all backdoor paths between Xt−γ and Yt in any FTCG in C(G),

(ii) Z does not block any directed path between Xt−γ and Yt in any FTCG in C(G),

(iii) Z does not contain any descendant of Xt in any FTCG in C(G).

Note that when there is no backdoor path between Xt−γ and Yt in any FTCG in C(G), Z = ∅
satisfies the backdoor criterion over all candidate FTCGs.

The backdoor criterion over all candidate FTCGs is sound for the identification of the to-
tal effect P(yt|do(xt−γ)) in an ESCG or SCG, as stated in the following corollary that can be
deduced from Pearl (1995, Theorem 1).

Corollary 1. Let X and Y be distinct vertices in an ESCG or SCG G of a DSCM with true (unknown)
probability P. Under consistency throughout time for G, if there exists a set Z satisfying the backdoor
criterion over all possible FTCGs relative to (Xt−γ, Yt), then the total effect of Xt−γ on Yt is identifiable
in G, and Z is a valid adjustment set.
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Figure 3.7: Two SCGs and a total effect which is not identifiable (on the left). Two candidate
FTCGs (middle and right). Each pair of red and blue vertices in the FTCGs represents the total
effect we are interested in. Gray vertices are ambiguous: they constitute a backdoor path in the
FTCG in the middle and belong to a directed path in the FTCG in the right (bold edges indicate
direct paths from Xt−γ to Yt).

However, enumerating all candidate FTCGs is computationally expensive (Robinson, 1977),
even when considering the constraints given by an ESCG or an SCG.

Identifiability in ESCG The total effect is always identifiable by adjustment in ESCGs.

Theorem 3.4.3. (Identifiability in ESCG) Consider an ESCG Ge. Under consistency throughout time
for Ge, the total effect P(yt|do(xt−γ)) is identifiable in Ge for any γ ≥ 0. Furthermore, the set

Bγ ={(Zt−γ−ℓ)1≤ℓ≤γmax |Zt− ∈ Par(Xt,Ge)} ∪ {Zt−γ|Zt ∈ Par(Xt,Ge)}

is a valid adjustment set for P(yt|do(xt−γ)).

Identifiability in SCG Here states the main result of this section: sufficient conditions for the
identifiability in SCG. Recall that Cycles(X,Gs) is the set of all directed cycles containing X in
Gs, and Cycles>(X,Gs) is the subset where cycles contain at least 2 different vertices.

Theorem 3.4.4. (Identifiability in SCG) Consider an SCG Gs = (V s, E s) associated with a DSCM
with true (unknown) probability distribution P. Under causal sufficiency and consistency throughout
time, the total effect P(yt|do(xt−γ)), with γ ≥ 0, is identifiable if X /∈ Anc(Y,Gs) or X ∈ Anc(Y,Gs)
and one of the following conditions holds:

1. Cycles>(X,Gs\{Y}) = ∅ and there exists no σ-active backdoor path πs = ⟨V1 = X, . . . , Vn =
Y⟩ from X to Y in Gs such that ⟨V2, . . . , Vn−1⟩ ⊆ Desc(X,Gs) or

2. γ = 0 and there exists no σ-active backdoor path πs = ⟨V1 = X, . . . , Vn = Y⟩ from X to Y in
Gs such that ⟨V2, . . . , Vn−1⟩ ⊆ Desc(X,Gs) or

3. Cycles>(X,Gs\{Y}) = ∅ and there exists σ-active backdoor path πs = ⟨V1 = X, . . . , Vn = Y⟩
from X to Y in Gs such that ⟨V2, . . . , Vn−1⟩ ⊆ Desc(X,Gs), and n = 2, and γ = 1, and
Cycles(Y,Gs\{X}) = ∅.

In the main paper, we have proved the above theorem proving that the following set:

Aγ ={(Zt−γ−ℓ)1≤ℓ≤γmax |Z ∈ Desc(X;Gs)} ∪ {(Zt−γ−ℓ)0≤ℓ≤γmax |Z ∈ V
s\Desc(X,Gs)} (3.5)

is a valid adjustment set when the total effect is identifiable. As one can note, it contains all
possible parents of Xt−γ in all candidate FTCGs of Gs. Thus, Aγ blocks any backdoor path π
between Xt−γ and Yt in any candidate FTCG through the parent of Xt−γ on that path.

Figure 3.6 show several cases where the total effect is identifiable, and Figure 3.7 show
several cases where the total effect is not identifiable.
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Chapter 4

Semi-supervised learning

This chapter is the result of collaborations with Massih-Reza Amini (LIG, Computer Science Lab-
oratory) and Valérie Monbet (IRMAR, Mathematics Research Institute of Rennes), and Vasilii
Feofanov (PhD student), Lies Hadjadj (PhD student) and Ashna Jose (PhD student). The Python
code associated to the methods has been developed by Vasilii Feofanova, Lies Hadjadj and Ashna
Joseb. Thanks to them!

• Self-training: a survey, M.-R. Amini, V. Feofanov, L. Pauletto, L. Hadjadj, E. Devi-
jver and Y. Maximov, (2024+), Neurocomputing, link arXiv

• Classification Tree-based Active Learning: A Wrapper Approach, A. Jose, E. Devi-
jver, M.-R. Amini, N. Jakse, R. Poloni, preprint, link arXiv

• Efficient Initial Data Selection and Labeling for Multi-Class Classification Using
Topological Analysis, L. Hadjadj, E. Devijver, R. Molinier, M.-R. Amini, ECAI 2024,
link arXiv

• Multi-class probabilistic bounds for self- learning, V. Feofanov, E. Devijver, M.-R.
Amini, Journal of Machine Learning Research (2024), link

• Tree-based Quantile Active Learning for automated discovery of MOFs, A. Jose,
E. Devijver, R. Poloni, V. Monbet, N. Jakse, AI for Accelerated Materials Design -
NeurIPS 2023 Workshop, link

• Regression tree-based active learning, A. Jose, J. Mendonca, E. Devijver, N. Jakse,
V. Monbet, R. Poloni (2023). Data Mining and Knowledge Discovery, link

• Wrapper feature selection with partially labeled data, V. Feofanov, E. Devijver, M.-
R. Amini (2022). Applied Intelligence, 52(11):12316–12329, link.

• Transductive bounds for the multi-class majority vote classifier, V. Feofanov, E. De-
vijver, M.-R. Amini (2019). Proceedings of the AAAI Conference on Artificial Intel-
ligence, 33(01):3566–3573, link.

aand is available at https://github.com/vfeofanov.
band is available at https://github.com/AshnaJose.
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Machine learning algorithms, when dealing with a classification or a regression task, often
require large training sets to perform well. However, labeling such large amounts of data is not
always feasible, as in many applications, substantial human effort and material cost is needed.

This chapter is focusing on semi-supervised learning (Chapelle et al., 2010), where data are
partially-labeled: labels are available only for some of the available training examples. The
semi-supervised learning lies inherently between the supervised learning and the unsuper-
vised learning, combining the best of the two worlds in the algorithmic perspective: unlabeled
examples contain valuable information about the problem, which improves the performance of
the supervised methods, and labeled examples guide the method, which improves the perfor-
mance and interpretability of unsupervised methods.

Let X ∈ X D be a D-dimensional vector, and let Y ∈ Y be a random variable linked to X. We
will consider in this chapter the regression task where Y ⊂ R and the multiclass classification
task where Y = {1, . . . , c}. We consider a dataset of size N with all unlabeled observations
{xi}N

=1, and we denote {yi}N
i=1 the associated (potentially unknown) labels.

The organization of this chapter is the following.

• In Section 4.1, we deal with the active learning task, where one wants to smartly choose
the labels to be considered in the training sample. In pool-based active learning, we ob-
serve a sample set XU = {xi}N

i=1 and no label, ZL = ∅. We have access to an oracle
O : X → Y that can provide the true label yi for every observation xi, for 1 ≤ i ≤ N
at some (expensive) cost. We propose two contributions. The first one is for the classifi-
cation task. Using topological data analysis tools, we construct topological regions, that
are homogeneous with the classification. Then, the oracle is labelling few points, that we
can distill to provide a (pseudo)-labeled sample. This is a project within the PhD thesis of
Lies Hadjadj, supervised by Massih-Reza Amini and Sana Louhichi, and in collaboration
with Rémi Molinier. All the details are available in Hadjadj et al. (2024). The second con-
tribution is general, and can deal with classification, regression, and even regression over
a region of interest. It is based on standard trees, from which we detect regions to sample.
This is the topic of Ashna Jose’s PhD thesis, co-supervised with Noel Jakse and Roberta
Poloni. All the details are available in Jose et al. (2023).1

• In Section 4.2, we consider the multi-class classification task. We assume that we ob-
serve few labels, ZL = {xi, yi}ℓi=1. We propose a generalization error bound for the ma-
jority vote classifier, where unlabeled data are pseudo-labelled (Feofanov et al., 2024),
from which we derive a multi-class self-training algorithm2. We also deal with high-
dimensional data, where the original set of features may contain irrelevant or redundant
characteristics to the output, which with the lack of labeled information leads to ineffi-
cient learning models. We propose a wrapper feature selection method for a low sparsity
level (Feofanov et al., 2022). This section corresponds to the PhD thesis of Vasilii Feofanov,
co-supervised with Massih-Reza Amini.

1Code available at https://github.com/AshnaJose/Regression-Tree-based-Active-Learning
2Code available at https://github.com/vfeofanov/trans-bounds-maj-vote
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Figure 4.1: Illustration of model-free vs model-based AL methods..

4.1 Active learning

Active learning (AL) aims to detect the observations to be labeled to optimize the learning pro-
cess and efficiently reduce the labeling cost. The primary assumption behind active learning is
that machine learning methods could reach a higher level of performance while using a smaller
number of training labels if they were allowed to choose the training dataset (Settles, 2009).
Formally, if f̂ In denotes the estimator among a class F of prediction models learnt on a training
set of size n indexed by In ⊂ {1, . . . , N} with respect to the risk R,

f̂ In = argmin
f∈F

{
1
n ∑

i∈In

R( f (xi), yi)

}
, (4.1)

we look for the set of observations indexed by In ⊆ {1, . . . , N} of size n such that the transduc-
tive risk is minimized:

In = argmin
In⊆{1,...,N};#In=n

{
1

N − n ∑
i/∈In

R( f̂ In(xi), yi)

}
. (4.2)

However, in practice, one does not have access to the transductive risk because the labels are
not observed.

When no labels are given at first, known as the cold-start problem, only the knowledge
of the features can be used. Then, having a first set of labeled data, some methods in AL
are proposed to increase the set of labels, that is to find new observations to be labeled to
improve even more the models. AL methods can be categorized based on their query criteria
into model-free and model-based method O’Neill et al. (2017). The former exploit only the
feature space information to construct the most informative training set, while the latter use
response information through regression functions trained on previously labeled samples. The
global scheme is introduced in Fig. 4.1. The classification task, where Y = {1, . . . , c}, has been
more studied in the literature, but few results focus on the regression task. We review in the
following the main ideas in the literature, divided into model-free and model-based methods,
whatever the nature of the output Y.

Model-free active learning Space filling approaches over the feature space Baram et al. (2004);
Wu et al. (2019) come under model-free methods, as they target a training set diverse in features.
It selects the sample closest to the centroid of the feature space as the first sample in the training
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set, followed by the one farthest from it, according to some distance. The samples to be labeled
consequently are the ones farthest from all the samples that have been previously selected to
ensure diversity. Representativeness Diversity take into account both diversity and represen-
tativeness of the feature space by partitioning the feature space. Several strategy have been
proposed: centroids of k-means clustering (Zhu et al., 2008), centroids of agglomerative hier-
archical clustering with Ward linkage (Dasgupta and Hsu, 2008), points close to the centroids
but satisfying some diversity criterion (Hu et al., 2010; Yu and Hansen, 2017; Liu et al., 2021),
and (Zhang et al., 2020) where the closeness is measured using the L1 distance. In the field of
survey methodology, the cube method (Chauvet and Tillé, 2006) has been used for balanced
sampling from finite populations. It constructs a sample of fixed size with the same character-
istics as those of the features of the full dataset, assuming that this sample will lead to a good
approximation of the distribution of the response.

Model-based active learning Model-based AL methods focus on the knowledge of the joint
distribution of X and Y through some (few) labeled examples to mimic the minimization prob-
lems given by Eqs. (4.1) and (4.2). To do so, a first set Iinit of ninit samples is detected by a
model-free method. Then, f̂ Iinit is considered as a first estimate of the chosen ML model. This
prediction function is now used to select the next nact = n− ninit samples. Note that the nact
samples can be detected sequentially (re-training the model after adding each sample), be split
into batches of moderate dimension or be detected in one step. Space filling approach over the
feature and response space (Wu et al., 2019) has been proposed, using the Ridge regression to
model the predictions. Using the training models, one may want to reduce the expected error:
considering the variance reduction (Cohn et al., 1994), reducing the misclassification error (Roy
and McCallum, 2001), or reducing the KL divergence (Elreedy et al., 2019) to refer to few of
those works. EMCM is looking for samples that will reduce the variance of a considered model
(Cai et al., 2013). Query By Committee (QBC) (Riis et al., 2022; McCallum and Nigam, 1998;
Yan et al., 2011; Burbidge et al., 2007) is a model-based AL strategy that selects the samples
with the highest variance among the predictions from a committee of models. The commit-
tee is constructed by bootstrapping on an initial set of passively labeled samples. Mondrian
trees is using a purely random tree to model the link between the covariates and the response
(Goetz et al., 2018). Some methods have also been proposed based on deep-learning Ren et al.
(2021), but this is out of the scope of this work. We mention one that we compare with for the
regression task (Holzmüller et al., 2023).

Remark that some of those methods are implemented in Python module (Kottke et al., 2021)
for active learning on top of scikit-learn for both the classification and the regression task.

We propose in Section 4.1.1 a method to detect relevant regions to sample, that can be used
within already existing AL methods for classification. Then, we propose in Section 4.1.2 a
model-based AL method using trees, first for the regression task, that is known to be more
difficult (Willett et al., 2005), and then extended to the quantile prediction and to the classifica-
tion task.

4.1.1 Proper Topological Regions for active learning in classification

We consider a multi-class classification problem such that the input space is X D ⊂ RD and the
output space is Y = {1, . . . , c}with c ∈N, c ≥ 2. We assume that close samples (with respect to
a distance d) are associated with similar labels, also known as the smoothness assumption. In that
setting, one can consider neighborhood graphs (XU , E) on the unlabeled sample XU = {xi}N

i=1,
with E the set of edges. Rips graphs, or more generally Rips complexes (Chazal et al., 2014),
can be considered: there is an edge between two vertices if their distance is smaller than some
threshold. However, class similarity might be different over the metric space: for example,
lower is the density, weaker is the chance to detect a structure within points. Consequently,
we introduce Rips graph and σ-Rips graph for an adaptive threshold function σ. Those two
notions of neighborhood graph are illustrated in Figure 4.2.
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(a) (b) (c)

Figure 4.2: (a) A sample of 240 points, generated from a mixture of two bivariate Gaussian
distributions. Colors/symboles represent the true classes. (b) Associated Rips graph with δ =
0.5 and d the Euclidean distance. (c) Associated σ-Rips graph, using the parametric form given
in Eq. (4.3) with δ = 0.5, r = 1.08, t = 1/5 and d the Euclidean distance.

Definition 4.1.1 (Rips graph and σ-Rips graph). Given a finite point cloud XU = {xi}N
i=1 from a

metric space (X , d) and δ ≥ 0, the Rips graph Rδ(XU ) is the graph with set of vertices XU and whose
edges correspond to the pairs of points (xi, xj) ∈ X2

U such that d(xi, xj) ≤ δ.
Given a real-valued threshold function σ : X 2 → R∗+, the σ-Rips graph Rσ(·)(XU ) is the graph

with set of vertices XU and whose edges correspond to the pairs of points (xi, xj) ∈ X2
U such that

d(xi, xj) ≤ σ(xi, xj).

In this work, we choose the following parametric threshold function:

σ(·; δ, r, t) : (x, x′) ∈ X ×X 7→ δ(r−max (P(x), P(x′)))
1
t ∈ R∗+, (4.3)

with t ∈ (0, 1] controlling the curvature, (δ, r) ∈ (R∗+)
2 such that r > maxx P(x) and are,

respectively, dilatation and translation parameters. The max term ensures that σ is symmetric.
In order to detect the underlying topology from a point cloud, our method is based on

ToMATo (Chazal et al., 2013). This is a clustering method that uses the hill climbing algorithm
on the Rips graph along with a merging rule on the Rips graph’s persistence. We have adapted
their method and extended in Hadjadj et al. (2024) their theoretical results to σ-Rips graph,
namely the detection of the peaks for a range of values of τ and their basin of attraction.

The topological regions correspond to the clusters given by ToMATo for a σ-Rips graph, de-
fined formally as follows.

Definition 4.1.2. The topological regions of a sample set XU coming from an unknown marginal distri-
bution P and with parameters (a, r, t, τ) are the clusters given by the clustering

TRXU ,P
δ,r,t,τ = ToMAToτ

(
Rσ(·;δ,r,t)(XU ), P

)
.

The proper topological regions of a sample set XU coming from an unknown marginal distribution P are
the topological regions of TRXU ,P

a∗ ,r∗ ,t∗ ,τ∗ where

(δ∗, r∗, t∗, τ∗) =argmin
(δ,r,t,τ)

{
PS
(
S , P, TRXU ,P

δ,r,t,τ

)}
,

with PS the purity size function, considering the labeling error when propagating the labels inside the
topological regions with LP

TR, penalized by the number of topological regions k in TR.

However, in our AL context, we need to use an unsupervised objective function and we
do not want to run ToMATo many times for complexity efficiency. We propose in Hadjadj et al.
(2024) an algorithm to estimate (δ∗, r∗, t∗, τ∗) based on the Silhouette score and the coverage
compactness.

We use the proper topological regions in a zero-shot learning algorithm to detect the first
examples to be labeled. The strategy is the following: we label the B largest proper topological
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Figure 4.3: Illustration of using PTR in a zero-shot learning algorithm. (a) data with the oracle
for the labels. (b) clustering given by tomato, describing the proper topological regions with
the best parameters. (c) output of zero-shot learning algorithm, where budget is 5, and with
propagation. Not all points are labelled, and not all labels are sure.

regions using label propagation within a cluster: we have to ask to the oracle B points, and we
then label ∑Bq=1|Rq| points. We denote by Ẑ0

L this first set of labeled points, which includes true
labels obtained directly from the oracle, and estimated labels while diffusing the true labels to
the topological regions. The benefit to use proper topological regions instead of any cluster-
ing method is in details. No structure is assumed, as in k-means for example where clusters
have a spherical shape. Here, only the topology is important, thus the algorithm can retrieve
connected components even with an ambiguous shape. Moreover, fine hyperparameter tuning
in ToMATo allows to merge or distinguish between regions. This approach is illustrated in an
extensive numerical experimentation in the main paper.

4.1.2 Tree-based Active Learning

Our proposed method relies on standard trees that partition the feature space into hyper-
rectangles (Rk)1≤k≤K, referred to as regions, and assigns a weight γk to each region k:

f (x; Θ) =
K

∑
k=1

γk1{x∈Rk},

where Θ = ((Rk, γk)1≤k≤K). The splitting process, being dyadic, can be represented as a binary
tree, where each node determines the features to split on and its corresponding value, resulting
in the final partition given by the leaves of the tree.

Active learning for regression

We initialize the method with the indices of the first samples, denoted as Iinit. A standard re-
gression tree with K leaves is then constructed using the corresponding labeled set (xi, yi)i ∈ Iinit,
which is subsequently used to predict the response for every unlabeled sample. Following the
results derived for purely random Mondrian trees (Goetz et al., 2018), the optimal performance
is achieved by selecting n∗k samples for labeling from each leaf k, where:

n∗k = nact

√
πkσ̂2

k

∑K
ℓ=1

√
πℓσ̂

2
ℓ

;

where nact = n− ninit, σ̂2
k represents the variance computed on the true labels in leaf k, and πk

denotes the probability that an unlabeled sample xi belongs to leaf k. This approach aims to
select diverse samples across the response space, ensuring the maximum possible information
is captured. The final labeled set is then approximated by În = Iinit ∪ (∪K

k=1 Ik
act), where Ik

act
represents the set of samples to be labeled from leaf k.

While random sampling from leaves has been the conventional approach (as done in (Goetz
et al., 2018)), it introduces additional randomness and may not fully utilize the labeled samples.
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Figure 4.4: Comparison of the samples selected for labeling (shown as black dots) by our
method from a generated dataset with 2 features and 500 samples, using different query criteria
(labeled as RT-AL, RT-AL(Diversity-based) and RT-AL(Representativity-based)), with passive
sampling and model-free AL methods GSx and iRDM. The black lines correspond to the differ-
ent regions the regression tree splits the feature-response space into. The colors represent the
true values of response in the data.

To address this, we propose leveraging ideas from model-free active learning algorithms for
sample selection. Points sampled from the leaves can be sampled by feature-space diversity
based methods, adapting Wu et al. (2019); or for datasets with prominent clustering, we pro-
pose a representativity-based criteria to select the samples from the leaves, adapted from Liu
et al. (2021). This is illustrated in Fig. 4.4.

Quantile-based extension

An extension of our method, known as Quantile RT-AL (QRT-AL), focuses on specific quantiles
of interest. When subsampling from the leaves, we incorporate the observed response quantiles
to oversample the region of interest. The number of samples to be labeled from each leaf k, n∗k ,
is distributed considering both the leaf properties and the desired quantile interval:

n∗k = nact

√
πkσ̂2

k αk

∑K
ℓ=1

√
πℓσ̂

2
ℓ αℓ

, with αk =
∑Q

q=1 wqnq
k

∑Q
q=1 nq

k

,

(αk)
K
k=1 specifying the quantile interval of interest, where nq

k are the number of unlabeled sam-
ples in the leaf k in quantile interval q, and wq are weights defined depending on the quantile
of interest.

We demonstrate the performance of our method to predict CO2 adsorption for MOFs in the
hypothetical MOF (hMOF) (Wilmer et al., 2011) database, and to predict band gaps for MOFs
in the Quantum MOF (QMOF) (Rosen et al., 2021, 2022) database. These publicly available
data sets consist of atomic structures of MOFs along with the respective target properties. We
show that this approach decreases the labeling cost tremendously. We also succeed to demon-
strate that our approach works for different quantiles of interest, low quantile for band gap
predictions and high quantile for predicting adsorption properties.

Extension to classification

We further extend our method to the classification task, where the splitting criterion in the
standard trees is based on the entropy, defined by Sk = −∑ pi,k log(pi,k) for the leaf k, with
pi,k are the predicted probabilities of each class i in leaf k. The goal is to create leaves as pure
as possible, where purity is determined by the distribution of class labels within each leaf.
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The method aims to effectively select samples for labeling, prioritizing regions with higher
uncertainty or impurity.

We first determine the purity of the leaves. The budget is then divided into the pure leaves
and the impure leaves, as a proof of concept in this work we proposed

npure =
nact

(1 + 3
max(1,nimpure leaves)

max(1,npure leaves)
)

(4.4)

where npure is the number of samples to be labeled from the pure leaves, nimpure leaves is the
total number of impure leaves and npure leaves is the total number of pure leaves. The number
of samples to be labeled from each leaf, n∗k , is computed as:

n∗k = nact

√
πkEk

∑K
ℓ=1
√

πℓEℓ

;

where πk denotes the probability that an unlabeled sample xi belongs to leaf k and Ek =
1Sk=0 + 1Sk ̸=0Sk. Note that using Ek = 1 does not imply high entropy for pure regions. Since
nact has been distributed among pure and impure regions using Equation (4.4), the criteria to
determine n∗k from the two types of regions are independent: using only the density of unla-
beled samples to query new points from pure regions (where entropy is zero), while using both
density of unlabeled samples and entropy among the pure labels to query new points from
impure regions.
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ZL
Supervised

Classifier

XU

Confidence Prediction

Policy

0

1

θ

(XP , ŶP )

XP ⊂ XU

XU ← XU \ XP
ZL ← ZL ∪ (XP , ŶP )

Figure 4.5: Self-training Algorithm: A supervised classifier is learned from the labeled set and
is used on the unlabeled set to provide predictions for the classes. A policy determines which
predictions are trusted (typically the most confident ones), and pseudo-labels are assigned to
those observations based on their predictions. This process is iterated until no more points
remain unlabeled.

4.2 Multi-class classification with partially labeled data

In this section, we focus on the multi-class classification task with Y = {1, . . . , c} with c ≥ 2.
Leveraging a partialy labelled set ZL = (xi, yi)1≤i≤n, our objective is to develop algorithms that
effectively utilize both labeled and unlabeled data to improve classification performance.

Self-training, a classic approach in semi-supervised learning (Amini et al., 2024), dates back
to the late 1960s (Scudder, 1965; Fralick, 1967). This iterative algorithm, illustrated in Figure
4.5, begins with a supervised classifier trained solely on labeled data. It then iteratively assigns
pseudo-labels to unlabeled examples with confidence scores above a predefined threshold, in-
corporating them into the training set. Recent advancements in self-training include strategies
for controlling the number of pseudo-labeled examples through techniques like curriculum
learning (Cascante-Bonilla et al., 2021).

Theoretical Foundations Understanding the generalization guarantees of majority vote clas-
sifiers is crucial for semi-supervised learning. Many works are focused on deriving tight PAC
guarantees for the Gibbs classifier in the inductive case (McAllester, 2003; Maurer, 2004; Catoni,
2007) and in the transductive case (Derbeko et al., 2004; Bégin et al., 2014) for the determinis-
tic case (each unlabeled example is associated to one and only one possible label). While this
bound can be tight, it reflects only the individual strength of voters, so using it as a mini-
mization criterion often leads to an increase in the test error (Masegosa et al., 2020). For the
majority vote classifier, Amini et al. (2008) derive a transductive bound based on how voters
agree on every unlabeled example. Lacasse et al. (2007) propose an upper bound (later called
C-bound) for the generalization error that is based on the first and the second statistical mo-
ments of the margin of the majority vote classifier, as a trade-off between the individual errors
of voters (the Gibbs risk) and the error correlation between them. Recently, Frei et al. (2022)
derived guarantees for the self-training with a binary linear classifier considering a specific
class of mixture models. While extensive research has focused on binary settings, extending
these results to the multi-class scenario presents challenges. Existing studies, such as Morvant
et al. (2012) and Laviolette et al. (2017), provide insights into generalization bounds and error
estimations. However, these studies typically assume perfectly labeled training examples, lim-
iting their applicability to real-world scenarios. While some methods have addressed this issue
in both supervised (Natarajan et al., 2013; Scott, 2015a; Xia et al., 2019) and semi-supervised
settings (Amini and Gallinari, 2003), theoretical studies in the multi-class case remain limited
(Chittineni, 1980).
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Feature Selection in Semi-Supervised Learning Given a level of sparsity d′ ≪ d, the goal of
feature selection is to find a feature subset S∗ ⊆ {1, . . . , d}, |S∗| = d′ based on ZL ∪XU that leads
to the highest classification performance among all possible feature subsets of size d′. Most of
the semi-supervised feature selection algorithms are extensions of popular supervised or unsu-
pervised filters, scoring features before the construction of a learning model. The Semi-Fisher
Score (Yang et al., 2010) extends the supervised Fisher score by embedding the graph Lapla-
cian computed on labeled and unlabeled data. The Semi-supervised Laplacian Score (Zhao
et al., 2008) is a graph-based approach that uses unlabeled examples to identify which features
are able to preserve the local structure of the data, and labeled examples to maximize dis-
tance between observations from different classes. The main disadvantage of filter approaches
is that feature importance is evaluated individually, which risks discarding features that are
important only in combination with others.(Guyon and Elisseeff, 2003). Recently, embedded
approaches, performing model-based feature selection within the training process, are being
actively studied. The Rescaled Linear Square Regression (Chen et al., 2017) ranks features by
learning a projection matrix using the least square regression with a sparse regularization and
scaling the regression coefficients with a set of scale factors. Jiang et al. (2019) use the Bayesian
approach to learn weights both for features and unlabeled examples that could be potentially
irrelevant. Finally, wrapper approaches use a learner to effectively find a subset of features that
are discriminatively powerful together. Ren et al. (2008) proposed a semi-supervised wrapper
approach, which incorporates unlabeled data to the training set by means of co-training, and
find the best feature subset using forward sequential search. Han et al. (2011) reduced the com-
plexity by pseudo-labeling the unlabeled examples just once and then performing the wrapper
feature selection on the augmented the data set. The criterion to detect relevant features is not
necessarily limited to the accuracy score, and other learning-based metrics can be used (Song
et al., 2007) with both labeled and unlabeled data. However, sequential search approaches (Ren
et al., 2008; Han et al., 2011) are time consuming for high-dimensional data. Heuristic search
algorithms, like the genetic algorithm (Goldberg and Holland, 1988), significantly reduce the
computational time (Siedlecki and Sklansky, 1993; Xue et al., 2015). Syed et al. (2021) proposed
genetic algorithm for wrapper selection in the semi-supervised multi-target regression case.

In this section, we aim to contribute to the theoretical understanding and practical application
of semi-supervised learning. We introduce in Section 4.2.1 a theoretical study of the majority
vote classifier, leading to the development of an adaptive self-training algorithm in Section
4.2.2. Furthermore, we propose a wrapper approach for feature selection in high-dimensional
data settings in Section 4.2.3, leveraging the insights gained from our theoretical analysis.

4.2.1 Probabilistic bounds for majority vote classifiers

In this section, we focus on evaluating the error of the majority vote classifier. For a fixed class of
classifiersH = {h : X → {1, . . . , c}}, consider the prior Q0 and the posterior Q that are defined
respectively before and after observing the training set. To measure confidence of the majority
vote classifier in its prediction, the notions of class votes and margin are further considered.

vQ(x, ŷ) := Eh∼QI(h(x) = ŷ) = ∑
h:h(x)=ŷ

Q(h);

mQ(x, y) := vQ(x, y)−max
ŷ ̸=y

vQ(x, ŷ).

A large value of the vote vQ(x, ŷ) indicates high confidence of the classifier that the true label
of x is ŷ, while the margin measures the gap between the vote of the true class and the maximal
vote among all other classes.
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Probabilistic transductive bounds

We define the transductive joint error rate of the Q-weighted majority vote classifier BQ over
the unlabeled set XU given a vector θ = (θy)c

y=1 ∈ [0, 1]c, as:

RU∧θ(BQ) :=
1
u ∑

x∈XU
∑

y∈{1,...,c}
y ̸=BQ(x)

P(Y = y|X = x)1{vQ(x,BQ(x))≥θBQ(x)}.

In the main paper, we provide a bound on the transductive joint error rate of BQ by the trans-
ductive Gibbs conditional risk, which is used to find adaptive threshold for the self-training al-
gorithm (see Section 4.2.2). We also show that if the Q-weighted majority vote classifier makes
most of its error on unlabeled examples with a low prediction vote, under certain conditions,
this bound is tight.

Probabilistic C-Bound with Imperfect Labels

When the classifier is trained on both labeled and pseudo-labeled data, there might be some
label noise. We consider theoretically a particular scenario when pseudo-labels are random
variables Ŷ, and have been inferred by a teacher model that is trained independently, either
by using hold-out set or pre-trained on a similar benchmark. Our framework then could be
applied to analyze the first iteration of self-training.

The goal of introducing the random variable Ŷ is to understand the difference between the
risk of a classifier h : X → {1, . . . , c}, when it is evaluated on the true label Y, R(h), and on the
imperfect label Ŷ, R̂(h). Probabilities P(Ŷ= ŷ|Y=y, X=x) are called the mislabeling probabili-
ties, and they allow us to explicitly model imperfection of labels. However, their estimation is
very challenging as they depend on x: we assume that the mislabeling probabilities (encoded
in the matrix P = (pŷ,y)1≤ŷ,y≤K) are class-related and instance-independent (Chittineni, 1980;
Amini and Gallinari, 2003; Natarajan et al., 2013; Scott, 2015a).

Then, we derive in the main paper a C-bound on the risk of BQ. Given data with imperfect
labels, the direct evaluation of the generalization error rate may be biased, leading to an overly
optimistic evaluation. Using the mislabeling matrix P we derive a more conservative C-bound.
In particular, this general result can be used to evaluate the error rate in the semi-supervised
setting when mislabeling arises from pseudo-labeling of unlabeled examples. Comparing with
the probabilistic transductive bound, the last one directly upper bounds the error rate, so it will
be tighter in most of cases.

When the margin mean, the margin variance and the mislabeling matrix are empirically
estimated from data, evaluation of the C-bound may be optimistically biased. We analyze the
behavior of the estimate with respect to the sample size using the PAC-Bayesian theory ini-
tiated by McAllester (1999, 2003). We additionally penalize the C-bound by the sample size
and the divergence between Q and Q0. As u grows, the penalization becomes less severe. The
obtained bound may be used to estimate the error of the majority vote from data, with the
pseudo-labeled unlabeled examples serving as a hold-out set for estimating the margin mo-
ments, and the labeled examples are used to estimate the mislabeling matrix. In the case of
classical ensembles, the latter can be performed in the out-of-bag fashion as in (Thiemann et al.,
2017; Lorenzen et al., 2019). However, the bound does not appear tighter in practice compared
to the supervised case (Laviolette et al., 2017) due to the additional penalization on estimation
of the mislabeling matrix.

4.2.2 Multi-class Self-training Algorithm

The central question of applying the self-training algorithm is how to choose the confidence
threshold. While setting the threshold to a low value would imply a lot of label noise, setting
it to a very high value would put excessive trust in the confidence score initially biased by the
small labeled set. Considering the prediction vote of the majority vote classifier as an indicator
of confidence, we propose the strategy to automatically select the threshold by minimizing the
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Figure 4.6: Feature Selection Genetic Algorithm (FSGA) in a nutshell.

following criterion RU|θ(BQ) defined as a trade-off between the error we induce by pseudo-
labeling and the number of pseudo-labeled examples:

RU|θ(BQ) :=
RU∧θ(BQ)

1
u ∑x∈XU I(vQ(x, BQ(x)) ≥ θBQ(x)

). (4.5)

To evaluate RU|θ(BQ), we bound the numerator of Eq. (4.5) by the transductive bound,
where we approximate the posterior P(Y=y|X=x) by vQ(x, y) of the base classifier trained on
labeled examples only. Although this approximation is optimistic, by formulating the bound
as probabilistic we keep some chances for other classes so the error of the supervised classifier
can be smoothed. Nevertheless, it must be borne in mind that the hypothesis space should be
diverse enough so that the entropy of (vQ(x, y))y=1{1, . . . , c} would not be always zero, and
the errors are made mostly on low prediction votes. In our experiments, as the base classifier
we use the random forest (Breiman, 2001) that aggregates predictions from trees learned on
different bootstrap samples.

To find an optimal θ∗ we should perform a grid search over the hypercube (0, 1]c, but we
have shown that this K dimensional minimization task can be replaced by K tasks of 1 dimen-
sional minimization, much more cheap.

4.2.3 Wrapper feature selection with partially labeled data

When considering high-dimensional data, we present a semi-supervised framework for wrap-
per feature selection using both labeled and unlabeled data. The approach consists of two
phases: first, we increase variety of the training data by pseudo-labeling the unlabeled exam-
ples using a self-training algorithm; then, we perform the feature selection in a wrapper fash-
ion by a proposed genetic algorithm named Feature Selection Genetic Algorithm. Consider the
random forest (Breiman, 2001, denoted by RF), due to its ability to output feature weights, ver-
satility for different tasks and high accuracy when the labeled set is scarce (Biau and Scornet,
2016). We use the out-of-bag error, which has been shown to be an unbiased estimator of the
generalization error (Breiman, 2001).

In contrast to Ren et al. (2008); Syed et al. (2021), who used a semi-supervised base classifier
to evaluate the strength of feature subsets, we assign pseudo-labels to unlabeled examples prior
to the feature selection step and then perform a subset search on the expanded training set,
which drastically reduce the algorithm’s complexity.

After obtaining an augmented data set via TSLA, we perform a heuristic search using a ge-
netic algorithm (Goldberg and Holland, 1988). The classical genetic algorithm, CGA, ignores
during the crossover any information like feature importance, since a child inherits features
from its parents at random. Moreover, the larger is the number of features, the larger is the
search space, so the algorithm becomes highly variable which affects the performance (Xue
et al., 2015). In this connection, we propose a new genetic algorithm for feature selection that
tackles these two problems: 1) the algorithm takes into account the importance of features dur-
ing the generation of a new population by using a weighted crossover, 2) it iteratively removes
variables that are found to be irrelevant, which accelerates the convergence and reduces the
search space. The main steps of this algorithm are summarized in Fig. 4.6.
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Chapter 5

Application in Material Science

The line of research developed in this chapter has started with the MAGNET chair of MIAI in-
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ence laboratory), Rémi Molinier (Institut Fourier, Mathematics laboratory) and Roberta Poloni
(SIMAP), and the supervision of Sébastien Becker (PhD student), Ashna José (PhD student),
João Paulo Mendonça (postdoc student) and Johannes Sandberg (PhD student). Thanks to them!
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• An Artificial Neural Network-based Density Functional Approach for Adiabatic
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link

• Unsupervised topological learning approach of crystal nucleation, S. Becker, E. De-
vijver, R. Molinier, N. Jakse, Scientific Reports , 2022, link
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Materials science is an interdisciplinary field - including chemistry, physics, and computer
science - dedicated to the study of the material’s properties and performance. Recently, machine
learning has found many applications within material science (Schmidt et al., 2019), being used
for a variety of tasks such as identification of atomic structures (Becker et al., 2022), prediction of
material properties (Furmanchuk et al., 2016; Zheng et al., 2018), among others. We particularly
focus on the atomistic scale, to understand how the atoms of the materials are arranged to give
rise to molecules, crystal or systems. The chemical bonding and atomic arrangement (crystal-
lography) are fundamental to studying the properties and behavior of any material, and much
of the electrical, magnetic and chemical properties of materials arise from this level of structure.

Computational material science is simulating the behavior of materials in silico (without
experiments), to drastically reduce the time and effort to optimize materials properties for a
given application. For example, the crystal nucleation phenomena corresponds to the early
stages where the liquid-to-solid transition occurs upon undercooling, initiates at the atomic
level on nanometre length and sub-picoseconds time scales and involves complex multidimen-
sional mechanisms with local symmetry breaking that can hardly be observed experimentally
in the very details. Unreachable until very recently, experimental observations of early stages of
nucleation was achieved by a tour de force using time tracking of three-dimensional (3D) Atomic
Electron Tomography (Zhou and et al, 2019) of metallic nanoparticles. Those complex phenom-
ena remain to date out-of-reach experimentally for bulk systems, thus hindering our theoretical
understanding when focusing only on experiments. Two specific methods for computational
material science are used here, namely the density functional theory (DFT) and molecular dy-
namics (MD).

Density-functional theory (DFT), developed in the mid-sixties, has revolutionized the field
of materials science. Its integration with advancements in hardware and infrastructure has
yielded a powerful tool for predicting the electronic and structural properties of materials, en-
abling their design and discovery for a wide range of applications (Jones, 2015). Despite the
many successes, the implementations of DFT still face several challenges that limit its predic-
tive power and applicability (Cohen et al., 2012). As an example, one can mention the calcu-
lation of spin-state energetics in transition metal complexes which represents a challenge for
any modern electronic structure ab initio method (Wilbraham et al., 2017; Domingo et al., 2010;
Radoń, 2019; Swart, 2008; Phung et al., 2018; Reimann and Kaupp, 2023). Recently, several
studies have shown how DFT can benefit from machine learning (ML) techniques. Pioneer
works (Snyder et al., 2012) proved that it is possible to learn the kinetic energy of 1D fermionic
systems. Brockherde et al. (2017) developed a ML scheme to learn the density via the external
potential/density Hohenberg–Kohn map, so that self consistency can be bypassed. Learning
the exchange and correlation functional itself, as demonstrated by the pioneer work by Nagai
et al. (2020), has also been studied (Chen et al., 2020; Li et al., 2021; Dick and Fernandez-Serra,
2021; Kirkpatrick et al., 2021). In this class of methods, the exchange and correlation is replaced,
adjusted, or corrected by an artificial neural network that receives as input functions of the elec-
tronic density. Those computations are still expensive, and one may resort to active learning
(introduced in Chapter 4, see Mukherjee et al. (2023); Osaro et al. (2023); Mukherjee et al. (2022);
Jablonka et al. (2021)).

An alternative approach is to circumvent DFT by employing classical potentials that of-
fer comparable precision. However, achieving statistically significant results demands large-
scale simulations. Despite advancements, conducting million-to-billion-atom simulations for
monatomic metals remains challenging, with only a limited number of studies currently pro-
viding such datasets (Sosso and et al, 2016). For example, when focusing on the crystal nucle-
ation, one should accurately model the interatomic interactions simultaneously in both solid
and liquid phases. Classical force fields (Mendelev et al., 2008; Lee et al., 2003) are fast and al-
low for the study of very large systems containing up to several millions of atoms, but they are
often inaccurate and lacking in transferability. In contrast ab initio simulations (Car and Par-
rinello, 1985), based on DFT (Hafner, 2008), allow for a much more accurate description, and
can be applied to any phase of matter and any combination of elements, but at a much higher
computational cost, and limited to systems of merely a few hundred atoms. Nucleation events
are rare events (viewed from the side of simulations), however, necessitate long simulations of
large systems (Sosso and et al, 2016). MD is a computer simulation method for analyzing the
physical movements of atoms and molecules. The atoms and molecules move as a function of
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time due to their mutual interaction (Newton’s law), giving a view of the dynamic evolution
of the system. MD with generic interaction models (Auer and Frenkel, 2001; ten Wolde et al.,
1995).

The organization of this chapter is the following.

• In Section 5.1, a new density functional approach is proposed to predict the adiabatic
energy differences in transition metal complexes. Based on an artificial neural network,
this method relies on a bio-inspired optimization, due to the non continuous (with re-
spect to parameters) loss function. This corresponds to a part of the postdoc of João Paulo
Mendonça, who worked with Noel Jakse, Roberta Poloni and me. More details are avail-
able in de Mendonça et al. (2023).

• In Section 5.2, we focus on the construction of a potential for the crystal nucleation. The
choice of the descriptors is fundamental to construct the potential, but no consensus has
been made to detect a small set of relevant fingerprints. In this work, we propose to in-
clude a step of feature selection in the high-dimensional neural network potentials, to let
the model select by itself the relevant fingerprints. An Adaptive Group Lasso penalty has
been considered. This corresponds to a part of the PhD thesis of Johannes Sandberg, co
supervised with Noel Jakse and Thomas Voigtman. More details are available in Sand-
berg et al. (2022).

• In Section 5.3, we analyze the dynamic of the atoms through the crystal nucleation of
metals. Unsupervised learning is used to model the several clusters within the crystal
nucleation, allowing to detect early the ones leading to crystal. Topological signatures are
used as fingerprints, using persistent homology, to describe local structures required for
the clustering methods. This corresponds to a part of the PhD thesis of Sébastien Becker,
co supervised with Noel Jakse and Rémi Molinier. More details are available in Becker
et al. (2022).

• In Section 5.4, we introduce the result of the active learning method introduced in Section
4.1.2 on two real datasets on Metal-organic frameworks (MOFs) to compute properties
(namely band gap and adsorption) that are expensive to obtain. This corresponds to a
part of the PhD thesis of Ashna Jose, co supervised with Noel Jakse and Roberta Poloni.
More details are available in Jose et al. (2024).

85



5.1 An Artificial Neural Network-based Density Functional Ap-
proach for Adiabatic Energy Differences in Transition Metal
Complexes

The aim of the present work is to train an exchange and correlation functional that exhibit
high accuracy in the prediction of both electronic densities and adiabatic energy differences of
transition metal complexes, as well as atomization energies and densities of simpler molecules.
The ML functional is trained using a bio-inspired non gradient-based approach adapted from
Particle Swarm Optimization (PSO, Kennedy and Eberhart (1995)). These results show that
by training a correction over r2SCAN using three light molecules and three diatomic (metal-
nonmetal) transition molecules, the prediction of adiabatic energy differences are improved
compared to the state-of-the-art in approximate KS-DFT at no expenses for the performance on
atomization energies.

Method Nagai et al. (2020) developed a new functional, defined as a correction over the
strongly constrained and appropriately normed (SCAN, Sun et al. (2015a)), trained on energies
and densities of a small subset (three molecules only made up by first and second row elements)
of the G2 dataset (Curtiss et al., 1997). The result showed an improvement over SCAN in the
prediction of ionization potentials and atomization energies on the complete G2 dataset. Yet,
previous reports on the literature pointed out some major numerical instabilities in some meta-
GGA functionals (Furness and Sun, 2019) including SCAN itself, for electron densities rapidly
changing in space. r2SCAN (Furness et al., 2020) recovers most of the physical limits that SCAN
originally had. In this work, in order to address the case of transition metal complexes, where
rapid fluctuations of the electronic density are expected, a new ANN-based functional defined
as a correction over r2SCAN is proposed. We also impose that the exchange and correlation
energy density εxc satisfies the physical limits imposed in r2SCAN using Lagrange multipli-
ers, as done by Nagai et al. (2022). Figure 5.1(left) shows a diagrammatic representation of
the feed-forward neural network adopted here. The architecture reflects the choice to adopt a
small number of fitted parameters. The local and semilocal functions that are provided to the
input neurons (ρ, ζ, s, τ) of the ANN are consistent with a meta-GGA functional. The correc-
tions Fx and Fc are computed separately so that different asymptotic limits are applied to each
of them (Sun et al., 2015a; Nagai et al., 2022). For the correct uniform coordinate density-scaling
condition (Levy and Perdew, 1985) and the exact spin scaling relation (Oliver and Perdew, 1979)
to be satisfied simultaneously, the exchange energy should not depend explicitly in ρ and ζ, so
this values are not included as inputs in the calculation of Fx. The loss function is the sum of
errors of adiabatic energy differences over three small molecules (NO, H2O, NH3), atomization
energies over three diatomic transition metal complexes (TMC, here FeO, CuF, CrH), and elec-
tron densities (in G2 and TMC). The first term was shown to yield good results for energetics
of light element-molecules (Dick and Fernandez-Serra, 2021; Nagai et al., 2020), while training
sets with different types of data per sample (i.e., sparse training data) can significantly improve
the performance of a machine learned-density functional (Kasim and Vinko, 2021). In order to
evaluate the effects of the database, six different training sets were considered: G2 ([NO + H2O
+ NH3]), G2+FeO, G2+CuF, G2+CrH, TMC ([FeO + CuF + CrH]), and ALL (G2 + TMC). The
terms of the loss function only apply when at least one of the related molecules is present in the
training set.

Since the equilibrium energies and densities are computed after converging the SCF process
with a given set of parameters, the loss function depends on quantities that are related in a
non-trivial way (non continuously) to the parameters of the ANN-functional, and smart non-
gradient based optimization techniques can outperform gradient-based ones. An adaptation
of Particle Swarm Optimization (PSO, Kennedy and Eberhart (1995)) is used as the training
algorithm.

Results In Figure 5.2(a), the evolution of the loss function is drawn, where only the best so-
lution (particle) at each migration is reported. After 30 migrations, the solution is converged
for every run except for G2. For this training set, a monotonic decrease of the loss function is
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Figure 5.1: Left: Architecture of the artificial neural network used in the present work. The w’s
and b’s represent the weights and bias used on the feed-forward process and the products in
parenthesis express the number of parameters in each of those elements. Right: Representation
of the different sets of molecular complexes studied in this work.

observed until 36 migrations. A different behavior is observed for the training sets including
TMC, where the slow monotonic decrease is followed by a sharp decrease, and then by a sta-
tionary region. This change in behavior is associated with solutions that cannot be improved
via migrations.

Figures 5.2(c) and (d) report the heatmap for the Spearman correlation matrix between the
partial errors that compose the loss function for particles sampled at migration #15, i.e., during
the optimization, and at migration #22, where the optimization stops, for the ALL training. At
migration #15, in Figure 5.2(c) we see that the errors on energies and densities of FeO and CuF,
as well as the densities on the G2 molecules, are optimized simultaneously. The loss function
part associated with ∆ECrH

H-L and ρCrH is negatively correlated with those values meaning that
their error increase while the total loss function decreases.

In the case of the ALL and TMC training sets, ∆ECuF
H-L was the first to reach a converged value

close to zero. At this point of the optimization, the particles dispersion was enough to allow
to find a new optimizing path for ∆EFeO

H-L , as seen in the top left green block in Figure 5.2(d)
(positive correlation between these quantities and the total loss function). The second block in
Figure 5.2(d), showing strong positive, correlation is negatively correlated with ∆err.

A full analysis of the results is provided in the main paper, comparing this new functional
with existed ones. Generally, performance is good, even more on complex molecules, as the
square planar compounds MnL2 and FeL2, as well as complexes far from the training set in
terms of geometry and choice of atoms, such as [Co(NCH)6]2+.
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Figure 5.2: (a) Evolution of the loss function values during the training process, for the six dif-
ferent training sets considered here. (b) Comparison between the evolution of the loss function
and that of the performance in the Fe complexes test along the migrations in the training with
the complete ALL training set. (c) and (d) show Spearman’s rank correlation coefficients be-
tween the total loss function and each one of the L1 distances that compose it, respectively for
the samples visited along migrations #15 and #22.

5.2 Adaptive Selection of Atomic Fingerprints for High-Dimensional
Neural Network Potentials

The use of machine-learned interatomic potentials (MLIPs), trained through supervised ap-
proaches, allows for bridging the gap between classical force fields and ab initio methods. By
training a MLIP on data from DFT-based simulations, it becomes feasible to predict forces with
ab initio accuracy while maintaining computational efficiency comparable to classical force
fields. This opens up new possibilities to study homogeneous nucleation at the atomic scale.

A fundamental aspect in developing MLIPs within a High-Dimensional Neural Network
Potential (HDNNP) framework (Behler and Parrinello, 2007) is the selection of appropriate
atomic descriptors (Behler, 2015). These descriptors serve to accurately represent atomic en-
vironments by encoding them into a set of features, often referred to as atomic fingerprints.
Imbalzano et al. (2018) proposed a feature selection method aimed at optimizing this choice by
leveraging filter methods, which do not explicitly incorporate model predictions.

Method The energy of an atom in a material typically depends on its surrounding environ-
ment within a few neighbor atom shells, constrained within a cutoff rc, as depicted in Figure
5.3a. Consequently, it is natural to write the total energy as a sum of local atomic contribu-
tions, and a HDNNP is composed of a sum of N NNPs, each associating a local environment
with an atomic energy Ei, as illustrated in Figure 5.3b. The atomic NNPs are trained indirectly
by fitting the HDNNP to the known total energy derived from DFT-based simulation. Subse-
quently, differentiation with respect to atomic positions yields force predictions. The inputs of
the HDNNP are atomic positions, which are transformed into fingerprint vectors Gi for each
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Figure 5.4: Total number of features (D), number of angular features (DG5 ), average test errors
with standard deviation, computational performance and validation objective for a sequence
of HDNNP models, plotted against the number of selected input features obtained by varying
the regularization strength λ. SHP: 22 hand-picked set of features to start with; Slarge: large set
(size: 329) of features to start with.

atom. These vectors are then fed into the atomic NNP to predict atomic energies, which are
summed to derive the total energy. In our selection of atomic descriptors, we specifically use
the Behler-Parrinello symmetry functions (Behler, 2011), a conventional choice for HDNNPs.

In the realm of linear models, a well-established embedded feature selection method is the
Lasso (Tibshirani, 1996), wherein ℓ1 regularization is applied to the model’s input parameters.
However, this approach is not directly applicable to Neural Networks. LassoNet (Lemhadri
et al., 2021) was recently introduced as an alternative, incorporating bypass connections for
each feature and penalizing them by the ℓ1 norm of the bypass weights. Another option is the
Group Lasso (GL), which groups all input weights of each feature and applies regularization
based on the Euclidean norm of each such collection of weights.

A refinement to the basic GL approach involves using an adaptive penalty, as proposed
by Dinh and Ho (2020). In the adaptive scheme, an initial training is conducted using the
standard GL penalty, which provides an initial estimate for the weights. Subsequently, training
is repeated using an adaptive penalty. We opt for Adaptive Group Lasso (AGL) over LassoNet,
due to its adaptiveness, simpler implementation and fewer hyperparameter.

Results In our experiments, we fix our atomic NNPs to have two hidden layers of 10 nodes
each, with tanh activation. Aluminium serves as our illustrative system. We commence with a
set of 22 fingerprints, initially chosen manually following the principles outlined in Jakse et al.
(2022) and Behler (2015), known to be adequate. Figure 5.4 summarizes the results. It shows
the validation objectives plotted against the number of selected features. We observe a plateau,
indicating the model’s ability to prune redundant features without sacrificing performance,
alongside sharp inclines where either essential features are discarded or higher penalties are
accepted. From our observations, selecting 10 features proves to be optimal, with 6 also show-
ing potential. These models undergo evaluation on a distinct test set, with ensuing computation
of average Mean Squared Error (MSE) and Root Mean Squared Error (RMSE). Additionally, we
conduct short Molecular Dynamics (MD) simulations of 1000 timesteps for each feature set.
Remarkably, we manage to reduce the number of fingerprints without notable accuracy loss
in the potential. Furthermore, we notice a preference towards selecting radial (G2) features,
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potentially linked to the simple angular structure of Aluminum.
To evaluate the approach across a broader spectrum, we compile a larger set of 269 radial

and 60 angular fingerprints, encompassing the previous 22. While such an extensive fingerprint
set may be impractical for HDNNPs due to patently redundant information, Figure 5.4 outlines
the results. Although the overall structure remains consistent, we generally select more fea-
tures with improved performance. Despite the stochastic nature of feature selection, and slight
variations in selected features across runs and dataset splits, we find the selection process to be
relatively stable.

90



Figure 5.5: Unsupervised learning of homogeneous nucleation. Snapshot of a ten-million atom
MD simulation of Ta during nucleation along the T = 1900 K isotherm (a and b). (c) Persistence
diagrams of homological dimensions H0, H1 and H2 for the mean structures of C1 (bcc ordering)
and C4 (preponderant liquid structure). (d) Clusters detected by the method. In (a) the snapshot
is represented only with atoms in cluster C1 and cluster C2 revealing all nuclei, while in (b)
atoms of all clusters are displayed: those in cluster C3 are located mainly at the border of the
nuclei and C4, C5 and C6 correspond to the surrounding liquid.

5.3 Unsupervised topological learning for crystal nucleation of
Tantalum

Crystal nucleation, the early stages where the liquid-to-solid transition occurs upon undercool-
ing, initiates at the atomic level on nanometre length and sub-picoseconds time scales and in-
volves complex multidimensional mechanisms with local symmetry breaking that can hardly
be observed experimentally in the very details. To reveal their structural features in simula-
tions without a priori, an unsupervised learning approach founded on topological descriptors
loaned from persistent homology concepts is proposed.

Method Persistent Homology (PH, Carrière et al. (2015); Motta (2018)) is an intrinsically flex-
ible, yet highly informative, tool which detects meaningful topological features deduced from
atomic configurations. It was successfully applied to characterise structural environments in
metallic glasses (Hirata et al., 2020), ice (Hong and Kim, 2019) and complex molecular liquids
(Sasaki et al., 2018). Always used as a structural analysis in these studies, the originality here
is to use PH as a translational and rotational invariant descriptor to encode the local structures
required for the clustering method. Components of homological dimensions H0, H1 and H2 are
then used as the descriptor. The use of two atomic neighbour shells to represent the local envi-
ronment was shown to optimize the local structural information of descriptors at the expense
of a loss of the spatial resolution (e.g., for the averaged bon-orientational order analysis (Lech-
ner and Dellago, 2008)), and here to provide more information in H0 and H1 components. Its
components are calculated from the Persistent Diagrams (PD) representing the birth and death
characteristics of each topological component. The number of H0 is fixed by the number of
neighbour atoms and the number of components of H1 and H2 is inferred from a subsampling
approach as described in Fasy et al. (2014) to remove the noise. For comparison, the persistent
homological informations are depicted on the persistence diagram shown in Figure 5.5(c) for
the two mean local structures assigned to C4 and C1 depicted in Figure 5.5(d). The differences
can be seen here between a disordered liquid structure and a perfect periodic lattice where all
the pairs (birth, death) are concurrent for each homological dimensions.

Then, a model-based clustering method is used, namely Gaussian Mixture Models (GMM)
(Hastie et al., 2001, Chapter 14) (already used with success to analyse MD simulations (Boat-
tini et al., 2020)) and its estimation by an Expectation Maximization (EM) algorithm (Dempster
et al., 1977). The inferred model from the method called hereafter TDA-GMM, is used to iden-
tify and describe the structural and morphological properties of the nuclei as well as their liquid
environment at various steps of the crystal nucleation.

Results Figure 5.5 depicts the methodology applied to Ta. Crystal nucleation is observed
along an isothermal process during which a configuration of the simulation is chosen for the
clustering. This configuration contains numerous nuclei of varying sizes and a significant
amount of liquid, rendering it representative of the phenomenon. From its inherent structure
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Figure 5.6: (a) Radial density profile of the largest nucleus during the growth at 2.7 nanoseconds
along the T = 1900 K isotherm. The red (blue) dashed horizontal lines correspond to the
average bulk crystalline density (resp. average bulk undercooled liquid without nucleation
events), both being simulated at T = 1900 K at ambient pressure. (b) Corresponding slice of
the nucleus through its centre and the surrounding liquid where atoms have been coloured
according to the cluster they belong to.

(Stillinger and T. A. Weber, 1982), a training set of 5, 000 non-overlapping local spherical struc-
tures within a cutoff radius of 6.8 Å is sampled for unsupervised learning. The sampling is
constrained to ensure uniform and random coverage of the entire simulation box. Among all
possible sets given by the GMM, the one with 6 clusters shown in Figure 5.5 (d) is representa-
tive of the system based on the minimum ICL criterion 5.5(c). The snapshot of the simulation
box in Figure 5.5(a) displays only atoms of type C1 and C2, as they exhibit clear crystalline or-
der. From this model, each atom of each configuration generated by the MD simulation can be
assigned to one of the six clusters (the one with the highest probability), and more than 99.99 %
of the structures have a probability to belong to the most probable Gaussian component greater
than 0.999.

The nucleation process is characterized by two order parameters: translational order (TO)
and bond orientational order (BOO). TO is represented the number density, applied to embryos
and nuclei at various growth stages through radial partial atomic density profiles ρi(r). Fig.
5.6(a) depicts density profiles ρi(r) for all 6 clusters of the largest nucleus and its surrounding
liquid at time 2.7 nanoseconds. The corresponding nucleus slice is depicted in Fig. 5.6(b), re-
vealing C1 atoms at the nucleus center and C2 atoms at its border. Notably, C3 atoms are mainly
located at the boundary of the nucleus, but they cannot be considered as being part of it, as
they are also present in the entire box. The nucleus density matches that of the bulk crystal.
Defining the remaining clusters as part of the liquid yields to a total density profile showing
minimal influence of the liquid in the nucleus vicinity, maintaining bulk undercooled liquid
density.
Each cluster’s BOO is identified through Common Neighbor Analysis (CNA, Faken and Jónsson
(1994)), revealing C1 and C2 clusters with perfect and slightly distorted body-centered cubic
(bcc) crystalline ordering. Clusters C4, C5, and C6 exhibit varying degrees of five-fold sym-
metry (FFS) characteristic of the liquid state, along with non-negligible bcc ordering. Cluster
C3 retains both FFS and bcc order. This BOO of liquid-associated clusters aligns with ab ini-
tio molecular dynamics simulations (Jakse et al., 2004), interpreted as compatible with the A15
crystalline phase. The CNA-based analysis confirms the TDA-GMM approach’s effectiveness
in capturing structural intricacies.
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5.4 Informative Training Data for Efficient Property Prediction
in MOFs

Metal-organic frameworks (MOFs) (Zhou et al., 2012; Wang et al., 2013), formed through coordi-
nation bonds between metal ions and organic ligands, are promising materials for efficient gas
capture and separation (Ding et al., 2019; Li et al., 1999), due to their ultrahigh porosity, chem-
ical tunability and large surface area (Li et al., 2018, 2009). Recently, they have been shown to
be potential candidate materials also for energy storage (Baumann et al., 2019; Zhao et al., 2016;
Mariano et al., 2023), water harvesting (Almassad et al., 2022), catalysis (Lee et al., 2009), and
sensing (Gamonal et al., 2020), thus evoking an interest in the electronic properties of MOFs
(Xie et al., 2020; Johnson et al., 2021; Zhang et al., 2017; Mariano et al., 2023). As such, the
identification and/or discovery of novel MOFs with specific properties becomes essential.

To assist in this endeavor, computational techniques such as molecular simulations and
density-functional theory were used to screen large MOF datasets, but it is computationally
intensive and frequently faces limitations (as illustrated in Section 5.1). Alternatively, machine
learning (ML) approaches were exploited to further accelerate MOFs discovery (Demir et al.,
2023). Based on a training sample, a descriptor-based ML model is learned, for e.g. kernel ridge
regression, random forests, or gradient boosting regression trees, (Burner et al., 2020; Janet and
Kulik, 2017; Fumanal et al., 2020; Ren and Coudert, 2023; Orhan et al., 2023; Jablonka et al.,
2023) to predict properties such as electronic and gas adsorption properties of unseen sam-
ples. Recently, deep learning methods such as crystal graph convolutional neural networks
(CGCNN, Xie and Grossman (2018); Rosen et al. (2021)) and transformer-based models (Cao
et al., 2023; Kang et al., 2023; Park et al., 2023) were also investigated. Despite being power-
ful and well-suited for large and complex data, deep-learning methods require a substantial
amount of labeled data and computational resources to train a complex model. They also re-
quire accurate hyperparameter optimizations and sometimes pre-training, which is not feasible
when few data are labeled.

In this work, we adopt an opposite strategy to MOFs discovery: we focus on situations
where properties are expensive to obtain and therefore large labeled datasets are not available
(Nandy et al., 2022). In such cases, it becomes imperative to construct a training set that in-
cludes the most diverse, representative, and informative samples. The regression tree-based
active learning algorithm introduced in Section 4.1.2 is applied to predict band gap and ad-
sorption properties of MOFs, a novel class of materials that results from the virtually infinite
combinations of their building units. Simpler and low dimensional descriptors, such as those
based on stoichiometric and geometric properties, found here to better represent MOFs in the
low data regime, are used to compute the feature space for this model. The partitions given
by a regression tree constructed on the labeled part of the dataset are used to select new sam-
ples to be added to the training set, thereby limiting its size while maximizing the prediction
quality. Through tests on the QMOF, hMOF, and dMOF data sets, we show that our method
constructs small training data sets to learn regression models that predict the target properties
more efficiently than existing active learning approaches, and with lower variance. Specifi-
cally, our active learning approach is highly beneficial when labels are unevenly distributed
in the descriptor space and when the label distribution is imbalanced, which is often the case
for real world data. This offers a unique tool to efficiently analyze complex structure-property
relationships in materials and accelerate materials discovery.

We report here the results on the QMOF dataset, more details are given in the main paper.
The performance of our active learning method, RT-AL, is assessed using the ST-120 descriptor.
The MAE for band gap predictions on the held out test set as a function of training set size is
reported in Figure 5.7 (a) for RT-AL and other active learning approaches. RT-AL is the best
performer for all training set sizes. To further understand the reason behind the good perfor-
mance of the RT-AL method, we compute an unsupervised structural dimensionality reduction
performed using the Uniform Manifold Approximation and Projection (UMAP, McInnes et al.
(2018)), with a distance matrix obtained from the ST-120 feature-set of the QMOF data set. The
result is reported in Figure 5.7(b) and (c) and the colors on the UMAP represent the values
of band gaps and the leaves, respectively. In these figures, we also show 60 labeled samples
selected using RT-AL as black circles. Although some clusters in the UMAP space are carried
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Figure 5.7: (a) MAE for predicting band gaps on the test set as a function of training set size
for ST-120 descriptor, using random sampling with KRR (RS-KRR) and RF (RS-RF), and the
active learning methods GSx, iRDM, QBC, GP and RT-AL with RF. Each point is an average
over 40 runs with different seeds for the train-test split. The horizontal dotted line is a guide to
the eye to compare the reduction in labeling cost for RT-AL over other sampling methods. (b)
Dimensionality reduction of the training pool of the QMOF data set performed using UMAP,
with a distance matrix obtained from the ST-120 feature-set of MOFs in the data set. Colors
represent the values of band gap and (c) the different regions given by the regression tree.

forward to the target space, some others have a hint of all colors. This implies that the data
is not well clustered in the target space, and neither evenly distributed. RT-AL uses both the
input and the target information through the structure of the regression tree and thus it selects
MOFs from every region of the target space, and is eventually able to give better predictions for
all band gap values. Importantly, RT-AL ensures to sample from all regions of the target space
also for very small training sets. In addition, Figure 5.7 (c) shows that the samples selected by
RT-AL are distributed well in the feature space, as well as among the various regions (leaves).
The tree succeeds to find meaningful patterns (chemical similarity) in the data as shown by
how the leaves are distributed in the UMAP.
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Conclusion and perspectives

This chapter concludes this manuscript and outlines my future projects and overall view of
research. Instead of delving into detailed extensions of the introduced methods, as these per-
spectives are already covered in the corresponding papers, I will discuss the main projects I am
currently involved in and the directions that interest me as I write this thesis.

Functional data analysis

In Chapter 1, we proposed several models for functional data analysis. Here, I highlight some
open questions that I intend to pursue in the (near) future.

Fixed discrete time points In all the models we proposed, the time points have been fixed
(non-random). However, it would be interesting to understand how the methodology could
be generalized to random time points. This question arose during my postdoc, introduced in
Section 1.2.1, and remains of interest. Typically, one would need to assume that the distribution
of the random time points is regular enough (i.e., no empty regions in the observed pattern
of discretized time points). This generalization, though mainly theoretical, is very useful to
understand the link with dynamical system.

Oracle inequality for model selection for confidence bands Section 1.2.3 discussed simulta-
neous confidence bands for linear models and the challenges of dealing with biased estimator.
We proposed a heuristic model selection criterion that balances bias and variance to select the
dimension in an orthonormal functional basis. This criterion is totally heuristic, and I would
like to go deeper in its theoretical analysis, by providing an oracle inequality to ensure the good
behavior of the criterion. I aim to deepen its theoretical analysis by providing an oracle inequal-
ity to ensure the criterion’s effectiveness. The main challenge lies in the supremum norm used
to ensure the confidence band’s level over the entire time. Classical results are stated for the L2
norm, so new tools are required to address this.
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Causality

In Chapter 3, we addressed several problems related to discovering causal graphs for time se-
ries and reasoning about them. This opens many new avenues for research, some of which I
will describe here.
Several projects have already begun, supported by two recent grants: my MIAI chair on causal-
ity and the Causalit-AI project in the PEPR IA, for which I am the local PI.
I would also like to mention that most of this manuscript has been written during a research
stay at the Copenhagen Causality Lab (CoCaLa), which emphasize that my main research di-
rection in the near future will be about causality.

Difference graphs Through discussions with experts, particularly in healthcare, I have learned
that difference graphs are of great interest but are not well studied methodologically. This is the
focus of Daria Bystrova’s postdoctoral work. When observing two populations (e.g., healthy
versus sick individuals), experts are particularly interested in the difference between these pop-
ulations. Usually, they compare the two populations using statistical tests for example. In terms
of causal discovery, the naive approach is to construct a causal graph for each group and manu-
ally compare the differences. However, it is more efficient to directly infer the difference graph,
which is expected to be sparse if the two populations exhibit similar behavior. This approach
leads to different assumptions and modeling challenges, such as moving away from the classi-
cal faithfulness assumption. The resulting graph is also not causal, but it would be interesting
to come back to the structural causal model to understand the difference.

Abstract graphs The identifiability results introduced in Section 3.4 can be seen as a conti-
nuity of Perkovic (2020), who discuss identifiability in the Markov Equivalence Class. The
graphs we consider (candidate FTCGs) may have different skeletons and may not all be com-
patible with the true underlying distribution for a given ESCG or SCG, and our results are more
general in that sense. Additionally, in ESCGs and SCGs, each vertex does not necessarily cor-
respond to a single observed variable. This can be viewed as an abstract graph where some
information is missing (specifically, the lag between the cause and the effect), resulting in sev-
eral causal graphs (FTCGs) that correspond to different potential skeletons and orientations. I
aim to pursue this line of research by considering generic abstract graphs where some informa-
tion is missing, but we have some knowledge on the causal graph. Anand et al. (2023) explored
this for cluster DAGs, assuming acyclicity, which I think is too strong for abstraction. Clément
Yvernes is currently doing an internship on this topic and will start a PhD in September 2024
with Marianne Clausel, Eric Gaussier and myself.

Markov blanket Causal discovery can be seen as a way to identify relevant features for a
specific node, related to feature selection via the Markov blanket (the set comprising its parents,
children and spouses). Théotime Le Goff recently began a PhD on this topic. Several papers
in the literature have bridged these two categories. Rütimann and Bühlmann (2009) proposed
a graphical model inference based on PC algorithm, initially designed for causal discovery.
Causal inference has been proposed based on invariance in prediction in Peters et al. (2016).
We aim to relate tools like causal random forest (Wager and Athey, 2018) or BART (Hahn et al.,
2020) to feature selection, thereby improving the general model.

Dynamic system and causal inference During my stay at the Copenhagen Causality Lab (Co-
CaLa), I gained new insights into linking causal discovery for time series and dynamic systems
in continuous time. The main drawback of modeling a stochastic process through time series
is the sensitivity of the graphical model to the choice of timestamps, the interval between the
measurements (Didelez, 2003). Larger intervals correspond to marginalizing over the time in
between, creating additional correlations due to common causes or mediating events, but also
hiding genuine short-term correlations. Instantaneous causality can also result from meantime
effects or unobserved processes. Therefore, one may consider generalizing dynamic depen-
dencies to the continuous-time situation. Formalizing a causal model for dynamical systems,
however, is a complex question (Peters et al., 2022). For example, in the iid case, conditional

96



independence relates to the properties of the graph through Markov condition, but it is not
clear how this applies in dynamical models. Local independence has been used for specific
model classes (Aalen, 1987; Mogensen and Hansen, 2022). I aim to explore how discrete-time
and continuous-time relate and their usefulness in different scenarios. Additionally, delving
deeper into SDE and stochastic process theory is an exciting avenue, allowing me to continue
developing models for functional data analysis and time series.

Semi-supervised learning

In Chapter 4, we explored several aspects of the semi-supervised learning paradigm. Here, I
present several open questions that interest me

Theoretical guarantees for active learning We proposed two methods to construct the train-
ing set, suitable for classification, regression or specific value range regression. These works
highlight the need of theoretical guarantees for active learning methods. Generalization bounds
would ensure good performance, but few results exist in the literature. We also hope for a faster
convergence rate than passive learning, as predicted by the central limit theorem, though this
remains an open question. On the methodological part, the regression task is rarely studied in
the literature, despite its practical importance. Our initial work has shown promising benefits,
but the theoretical and practical limitations need further study.

Active learning and semi-supervised learning We focused on semi-supervised learning for
multi-class classification. We derived several theoretical bounds, controlling the probabilis-
tic transductive risk and taking into account potential noisy labels, as well as PAC-bayesian
bounds on the C-bound. Based on this result, we proposed a multi-class self-training algorithm
where the threshold for selecting unlabeled data to pseudo-label is automatically determined.

Semi-supervised learning is taking the benefit of labeled examples as well as the knowledge
of unlabeled examples. Pseudo-labeling unlabeled data (with some confidence) can enhance
the performance of supervised method, but it is crucial to manage the induced noise carefully.

One perspective is to combine active learning and semi-supervised learning, from both
methodological and theoretical viewpoints, to handle real dataset that are expensive to label,
as it is the case, for example, in materials science.

Material Science

We began Chapter 5 by highlighting that machine learning has found numerous applications
within material science, being utilized for tasks ranging from the fundamental quantum de-
scription of matter to the discovery of materials with desired properties. Our findings suggest
that machine learning can not only uncover new applications within material science but also
drive the development of new methodologies, as discussed in Section 4.1.2.

This interdisciplinary research between machine learning and materials science has yielded
significant contributions, leading to both methodological advancements in machine learning
and tangible progress in materials science. Specific questions have emerged from each problem,
alongside more general inquiries.

One future direction is the Ph.D. project of Vsevolod Morozov, who started his PhD in May
2024 and is supervised by Noel Jakse, Charlotte Laclau and myself. Our goal is to refine the
method proposed in Section 5.3 to discern the distinct stages of crystallization in a metal. This
entails developing a clustering method with graph embeddings to describe the local neigh-
borhood of each atom while considering the time evolution in the clustering process. This
endeavor establishes connections with network inference outlined in Chapter 2 and the link
between dynamic system and causality described previsouly.

More broadly, several open questions emerge: How can we integrate experimental results to
improve or guide machine learning? How can we leverage insights from physical and chemical
domains to enhance machine learning methods?
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Bouveyron, C., Côme, E., and Jacques, J. (2015). The discriminative functional mixture model
for a comparative analysis of bike sharing systems. The Annals of Applied Statistics,
9(4):1726–1760.

Bouveyron, C. and Jacques, J. (2011). Model-based Clustering of Time Series in Group-specific
Functional Subspaces. Advances in Data Analysis and Classification, pages 281–300.

Bouveyron, C., Jacques, J., Schmutz, A., Simoes, F., and Bottini, S. (2021b). Co-Clustering
of Multivariate Functional Data for the Analysis of Air Pollution in the South of France.
Annals of Applied Statistics.
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