Soutenance Habilitation à Diriger des Recherches

Apprentissage statistique pour des données structurées en grande dimension

Emilie Devijver

CNRS, Université Grenoble Alpes, France

10 décembre 2024

Motivation

Explorer et résoudre des **défis méthodologiques** en **apprentissage statistique**, guidé par des **applications concrètes**.

- Comment construire les données d'apprentissage?
- Comment quantifier l'incertitude dans les données?
- Comment modéliser l'interdépendance dans les données?
- Comment limiter l'instabilité des méthodes?
- Comment déterminer les structures causales sous-jacentes d'un processus ?

Thèmes de recherche

- Méthodes pour la régression en grande dimension
- Inférence de réseaux avec des modèles graphiques gaussiens
- Inférence causale pour les séries temporelles
- Apprentissage semi-supervisé
- Application en science des matériaux

Thèmes de recherche

- Méthodes pour la régression en grande dimension
- Inférence de réseaux avec des modèles graphiques gaussiens
- Inférence causale pour les séries temporelles
- Apprentissage semi-supervisé
- Application en science des matériaux

Cette présentation :

Etude des données interdépendantes avec les modèles graphiques

Modèles graphiques

Données : variables aléatoires Y_1, \ldots, Y_p . Souvent ces variables sont dépendantes : on considère globalement

Y vecteur de taille p

On cherche à construire un graphe G = (V, E) où

- Les noeuds $V = \{1, ..., p\} \Leftrightarrow$ variables aléatoires
- Les arêtes E ⇔ dépendances directes et significatives entre les variables

Outils :

- Partie 1. Modèles graphiques non orientés
- Partie 2. Modèles graphiques orientés

Modèles graphiques

Données : variables aléatoires Y_1, \ldots, Y_p . Souvent ces variables sont dépendantes : on considère globalement

Y vecteur de taille p

On cherche à construire un graphe G = (V, E) où

- Les noeuds $V = \{1, ..., p\} \Leftrightarrow$ variables aléatoires
- Les arêtes E ⇔ dépendances directes et significatives entre les variables

Outils :

- Partie 1. Modèles graphiques non orientés
- Partie 2. Modèles graphiques orientés

Modèles graphiques

Données : variables aléatoires Y_1, \ldots, Y_p . Souvent ces variables sont dépendantes : on considère globalement

Y vecteur de taille p

On cherche à construire un graphe G = (V, E) où

- Les noeuds $V = \{1, ..., p\} \Leftrightarrow$ variables aléatoires
- Les arêtes E ⇔ dépendances directes et significatives entre les variables

Outils :

- Partie 1. Modèles graphiques non orientés
- Partie 2. Modèles graphiques orientés

Partie 1. MODÈLE GRAPHIQUE GAUSSIEN

Modèle graphique gaussien

Modèle

 $\mathbf{Y} \sim \mathcal{N}_{\mathcal{P}}(\mathbf{0}, \Sigma)$

Arête dans le graphe $\Leftrightarrow \Theta_{j_1,j_2} = \Sigma_{j_1,j_2}^{-1} \neq 0$

Données : $(\mathbf{y}_1, \dots, \mathbf{y}_n)$ iid **But :** estimer Θ

Estimateur du Maximum de vraisemblance

$$\widehat{\Theta} \coloneqq \operatorname{argmin}_{\Theta} \{ \log \det(\Theta) - \operatorname{tr}(S\Theta) \}$$

où *S* est la matrice de covariance empirique calculée sur $(y_1, ..., y_n)$ Estimateur du Graphical Lasso¹:

$$\widehat{\Theta}_{\lambda}^{\mathsf{GL}} \coloneqq \operatorname{argmin}_{\Theta} \{ \log \det(\Theta) - \operatorname{tr}(S\Theta) - \lambda \|\Theta\|_1 \}$$

1. Friedman, Hastie, Tibshirani, 2008, Biostatistics

Modèle graphique gaussien

Modèle

 $\bm{Y} \sim \mathcal{N}_{\bm{\rho}}(\bm{0}, \bm{\Sigma})$

Arête dans le graphe $\Leftrightarrow \Theta_{j_1,j_2} = \Sigma_{j_1,j_2}^{-1} \neq 0$ **Données :** $(\mathbf{y}_1, \dots, \mathbf{y}_n)$ iid

But : estimer Θ

Estimateur du Maximum de vraisemblance

$$\widehat{\Theta} \coloneqq \underset{\Theta}{\operatorname{argmin}} \{ \log \det(\Theta) - \operatorname{tr}(S\Theta) \}$$

où *S* est la matrice de covariance empirique calculée sur $(\mathbf{y}_1, ..., \mathbf{y}_n)$ Estimateur du Graphical Lasso¹:

$$\widehat{\Theta}_{\lambda}^{\mathsf{GL}} \coloneqq \operatorname{argmin}_{\Theta} \{ \log \det(\Theta) - \operatorname{tr}(S\Theta) - \lambda \|\Theta\|_1 \}$$

1. Friedman, Hastie, Tibshirani, 2008, Biostatistics

Modèle graphique gaussien

Modèle

 $\bm{Y} \sim \mathcal{N}_{\bm{\rho}}(\bm{0}, \bm{\Sigma})$

Arête dans le graphe $\Leftrightarrow \Theta_{j_1,j_2} = \Sigma_{j_1,j_2}^{-1} \neq 0$

Données : $(\mathbf{y}_1, \dots, \mathbf{y}_n)$ iid **But :** estimer Θ

Estimateur du Maximum de vraisemblance

$$\widehat{\Theta} \coloneqq \underset{\Theta}{\operatorname{argmin}} \{ \log \det(\Theta) - \operatorname{tr}(S\Theta) \}$$

où *S* est la matrice de covariance empirique calculée sur $(\mathbf{y}_1, ..., \mathbf{y}_n)$ Estimateur du Graphical Lasso¹:

$$\widehat{\Theta}_{\lambda}^{\mathsf{GL}} \coloneqq \operatorname*{argmin}_{\Theta} \{ \log \det(\Theta) - \operatorname{tr}(S\Theta) - \lambda \|\Theta\|_1 \}$$

1. Friedman, Hastie, Tibshirani, 2008, Biostatistics

Estimateur du Graphical Lasso² :

$$\widehat{\Theta}_{\lambda}^{\mathsf{GL}} \coloneqq \underset{\Theta}{\operatorname{argmin}} \{ \log \det(\Theta) - \operatorname{tr}(S\Theta) - \lambda \|\Theta\|_1 \}$$

A Problème complexe d'optimisation

Implémentation efficace de $\widehat{\Theta}_{\lambda}^{GL}$: décomposition en 2 étapes ³

- Seuillage de |S| au niveau $\lambda \Rightarrow$ détection d'une structure par blocs
 - ⇒ classification hiérarchique avec lien simple
 - Croisée
- ② Graphical Lasso de paramètre de régularisation λ dans chaque bloc
- 2. Friedman, Hastie, Tibshirani, 2008, Biostatistics
- 3. Mazumder et Hastie, 2012, JMLR

Estimateur du Graphical Lasso² :

$$\widehat{\Theta}_{\lambda}^{\mathsf{GL}} \coloneqq \underset{\Theta}{\operatorname{argmin}} \{ \log \det(\Theta) - \operatorname{tr}(S\Theta) - \lambda \|\Theta\|_1 \}$$

A Problème complexe d'optimisation

Implémentation efficace de $\widehat{\Theta}^{\rm GL}_{\lambda}$: décomposition en 2 étapes ³

Seuillage de |S| au niveau $\lambda \Rightarrow$ détection d'une structure par blocs

 \Rightarrow classification hiérarchique avec lien simple '

Remplacer le lien simple par le lien moyen et sélectionner K par validation croisée

(2) Graphical Lasso de paramètre de régularisation λ dans chaque bloc

- 2. Friedman, Hastie, Tibshirani, 2008, Biostatistics
- 3. Mazumder et Hastie, 2012, JMLR
- 4. Tan, Witten et Shojaie, 2015, CSDA

Estimateur du Graphical Lasso² :

$$\widehat{\Theta}_{\lambda}^{\mathsf{GL}} \coloneqq \underset{\Theta}{\operatorname{argmin}} \{ \log \det(\Theta) - \operatorname{tr}(S\Theta) - \lambda \|\Theta\|_1 \}$$

A Problème complexe d'optimisation

Implémentation efficace de $\widehat{\Theta}^{\rm GL}_{\lambda}$: décomposition en 2 étapes 3

- Seuillage de |S| au niveau $\lambda \Rightarrow$ détection d'une structure par blocs
 - ⇔ classification hiérarchique avec lien simple⁴
 - Remplacer le lien simple par le lien moyen et sélectionner K par validation croisée
- **(2)** Graphical Lasso de paramètre de régularisation λ dans chaque bloc
- 2. Friedman, Hastie, Tibshirani, 2008, Biostatistics
- 3. Mazumder et Hastie, 2012, JMLR
- 4. Tan, Witten et Shojaie, 2015, CSDA

Estimateur du Graphical Lasso² :

$$\widehat{\Theta}_{\lambda}^{\mathsf{GL}} \coloneqq \underset{\Theta}{\operatorname{argmin}} \{ \log \det(\Theta) - \operatorname{tr}(S\Theta) - \lambda \|\Theta\|_1 \}$$

A Problème complexe d'optimisation

Implémentation efficace de $\widehat{\Theta}_{\lambda}^{GL}$: décomposition en 2 étapes ³

- Seuillage de |S| au niveau $\lambda \Rightarrow$ détection d'une structure par blocs
 - ⇔ classification hiérarchique avec lien simple⁴
 - Remplacer le lien simple par le lien moyen et sélectionner K par validation croisée
- **(2)** Graphical Lasso de paramètre de régularisation λ dans chaque bloc
- 2. Friedman, Hastie, Tibshirani, 2008, Biostatistics
- 3. Mazumder et Hastie, 2012, JMLR
- 4. Tan, Witten et Shojaie, 2015, CSDA

Shock 5

Slope heuristic for block-diagonal covariance structure detection for network inference

Soit **B** = (B_1, \ldots, B_K) la partition des variables.

$$F_{\mathbf{B}} = \left\{ f_{\mathbf{B}} = \phi_{\mathcal{P}}(0, \Sigma_{\mathbf{B}}) \text{ avec } \Sigma_{\mathbf{B}} \in \mathbb{S}_{\mathcal{P}}^{++}(\mathbb{R}) \middle| \Sigma_{\mathbf{B}} = P_{\sigma} \begin{pmatrix} \Sigma_{1} & 0 & 0\\ 0 & \ddots & 0\\ 0 & 0 & \Sigma_{\mathcal{K}} \end{pmatrix} P_{\sigma}^{-1} \right\}$$

5. 🖹 D. et Gallopin, 2018, JASA

Shock 5

Slope heuristic for block-diagonal covariance structure detection for network inference

Soit $\mathbf{B} = (B_1, \dots, B_K)$ la partition des variables.

$$F_{\mathbf{B}} = \left\{ f_{\mathbf{B}} = \phi_{\mathcal{P}}(0, \Sigma_{\mathbf{B}}) \text{ avec } \Sigma_{\mathbf{B}} \in \mathbb{S}_{\mathcal{P}}^{++}(\mathbb{R}) \middle| \Sigma_{\mathbf{B}} = P_{\sigma} \begin{pmatrix} \Sigma_{1} & 0 & 0\\ 0 & \ddots & 0\\ 0 & 0 & \Sigma_{\mathcal{K}} \end{pmatrix} P_{\sigma}^{-1} \right\}$$

 $\begin{array}{l} \mathcal{B}: \text{ensemble des partitions possibles avec } p \text{ variables} \\ \text{Cardinal : nombre de Bell} \\ \text{par exemple, pour } p = 10, \ |\mathcal{B}| = 21147 \\ & & & \\ \textbf{\Delta} \text{Exploration exhaustive de } \mathcal{B} \text{ impossible} \end{array}$

^{5. 🖹} D. et Gallopin, 2018, JASA

Shock 5

Slope heuristic for block-diagonal covariance structure detection for network inference Soit $\mathbf{B} = (B_1, \dots, B_K)$ la partition des variables.

$$F_{\mathbf{B}} = \left\{ f_{\mathbf{B}} = \phi_{\mathcal{P}}(0, \Sigma_{\mathbf{B}}) \text{ avec } \Sigma_{\mathbf{B}} \in \mathbb{S}_{\mathcal{P}}^{++}(\mathbb{R}) \middle| \Sigma_{\mathbf{B}} = P_{\mathcal{T}} \begin{pmatrix} \Sigma_{1} & 0 & 0\\ 0 & \ddots & 0\\ 0 & 0 & \Sigma_{\mathcal{K}} \end{pmatrix} P_{\mathcal{T}}^{-1} \right\}$$

- Détection de la structure par blocs
 - (1) Calcul de la matrice de covariance empirique S
 - (2) Construction des partitions $\mathcal{B}_{\Lambda} = (\mathbf{B}_{\lambda})_{\lambda \in \Lambda}$ avec la classification hiérarchique avec lien simple
 - (3) Pour chaque partition B ∈ B_Λ, calculer l'estimateur du maximum de vraisemblance f_B.
 - (4) Sélectionner **B** avec un critère de sélection de modèles

$$\hat{\mathbf{B}} = \underset{\mathbf{B} \in \mathcal{B}_{\Lambda}}{\operatorname{argmin}} \left\{ -\frac{1}{n} \sum_{i=1}^{n} \log(\hat{f}_{\mathbf{B}}(\mathbf{y}_{i})) + \operatorname{pen}(\mathbf{B}) \right\}$$

(2) Graphical Lasso de paramètre de régularisation λ dans chaque bloc

5. 🖹 D. et Gallopin, 2018, JASA

Shock en théorie

Procédure **adaptative minimax** pour apprendre la structure diagonale par blocs.

Théorème (D. et Gallopin, 2018, JASA)

Soit c > 0. Il existe $\kappa > 0$ et C_1 tels que, dès que

$$\operatorname{pen}(\mathbf{B}) \ge \kappa \frac{D_{\mathbf{B}}}{n} \left[2c^2 + \log\left(\frac{p^4}{D_{\mathbf{B}}(\frac{D_{\mathbf{B}}}{n}c^2 \wedge 1)}\right) \right],$$

alors

$$\hat{\mathbf{B}} = \underset{\mathbf{B} \in \mathcal{B}_{\Lambda}}{\operatorname{argmin}} \left\{ -\frac{1}{n} \sum_{i=1}^{n} \log(\hat{f}_{\mathbf{B}}(\mathbf{y}_{i})) + \operatorname{pen}(\mathbf{B}) \right\}$$

vérifie une inégalité oraculaire et une borne inférieur minimax.

Shock en pratique

- On ne peut pas utiliser la pénalité théorique
- On simplifie la forme de la pénalité

$$pen(B) = \kappa D_B$$

- On calibre la constante κ à partir des données, en utilisant l'heuristique de pentes 6
- Méthode 1 : Saut de dimension

6. Birgé et Massart, 2007, PTRF

Méthode 2 : Régression robuste

Performance sur les données simulées

Données simulées : p = 100, n = 70 et Σ est diagonale par blocs avec $K^* = 15$. Résultats sur 100 simulations.

Stabilité de l'inférence de réseaux

4 jeux de données simulées - n = 30, p = 50

▲ Comment rendre stable la sélection de variables ? ♀ En ré-échantillonnant !

- Bootstrap Lasso⁷, pour la régression linéaire pénalisée
- Sélection stable⁸, en considérant le chemin de régularisation, et choix des hyperparamètres⁹
- StARS¹⁰, sélectionne un modèle parcimonieux et stable
- ESCV¹¹ adapte la validation croisée pour assurer la stabilité

A-t-on besoin de ré-échantilloner pour stabiliser une méthode ?
Mesure d'influence des observations ¹²

- 9. Bodinier, Filippi, Nøst, Chiquet et Chadeau-Hyam, 2023, JRSS C
- 10. Liu, Roeder et Wasserman, 2010, NeurIPS
- 11. Lim et Yu, 2016, JCGS
- 12. Bar-Hen et Poggi, 2016, JMVA

^{7.} Bach, 2008, ICML

^{8.} Buhlmann et Meinshausen, 2010, JRSS B

▲ Comment rendre stable la sélection de variables ? ♀ En ré-échantillonnant !

- Bootstrap Lasso⁷, pour la régression linéaire pénalisée
- Sélection stable⁸, en considérant le chemin de régularisation, et choix des hyperparamètres⁹
- StARS¹⁰, sélectionne un modèle parcimonieux et stable
- ESCV¹¹ adapte la validation croisée pour assurer la stabilité

A-t-on besoin de ré-échantilloner pour stabiliser une méthode?

Mesure d'influence des observations ¹²

- 10. Liu, Roeder et Wasserman, 2010, NeurIPS
- 11. Lim et Yu, 2016, JCGS
- 12. Bar-Hen et Poggi, 2016, JMVA

^{7.} Bach, 2008, ICML

^{8.} Buhlmann et Meinshausen, 2010, JRSS B

^{9.} Bodinier, Filippi, Nøst, Chiquet et Chadeau-Hyam, 2023, JRSS C

Stabilité de shock 14

♀ La décomposition en deux étapes stabilise la méthode. θ_{A_1} et θ_{A_2} deux dendrogrammes de lien simple basés sur les matrices de distance A_1 et A_2 , $d_{coph}(\theta_{A_1}, \theta_{A_2})$ la distance cophénétique.

Stabilité de la classification hiérarchique avec lien simple ¹⁷

Théorème (🖹 D., Gallopin et Molinier, 2024+)

Soit deux échantillons $(\mathbf{y}_1, \ldots, \mathbf{y}_n)$ et $(\mathbf{y}_1, \ldots, \mathbf{\tilde{y}}_i, \ldots, \mathbf{y}_n)$, où $\mathbf{\tilde{y}}_i \sim \mathbf{y}_i \sim \mathbf{Y}$, et soit S et $\mathbf{\tilde{S}}$ les matrices de covariance empiriques respectives. Alors, pour $\alpha \in (0, 1)$, avec probabilité 1 – α ,

$$d_{coph}(\theta_{1-|S|}, \theta_{1-|\tilde{S}|}) \leq \frac{2p}{(n-1)\sqrt{\alpha}}$$

13. Carlsson et Mémoli, 2010, JMLR

14. 🖹 D., Gallopin et Molinier, 2024, arXiv

Stabilité de shock 14

♀ La décomposition en deux étapes stabilise la méthode. θ_{A_1} et θ_{A_2} deux dendrogrammes de lien simple basés sur les matrices de distance A_1 et A_2 , $d_{coph}(\theta_{A_1}, \theta_{A_2})$ la distance cophénétique.

Stabilité de la classification hiérarchique avec lien simple 13

Théorème (🖹 D., Gallopin et Molinier, 2024+)

Soit deux échantillons $(\mathbf{y}_1, \ldots, \mathbf{y}_n)$ et $(\mathbf{y}_1, \ldots, \mathbf{\tilde{y}}_i, \ldots, \mathbf{y}_n)$, où $\mathbf{\tilde{y}}_i \sim \mathbf{y}_i \sim \mathbf{Y}$, et soit *S* et $\mathbf{\tilde{S}}$ les matrices de covariance empiriques respectives. Alors, pour $\alpha \in (0, 1)$, avec probabilité $1 - \alpha$,

$$d_{coph}(\theta_{1-|S|}, \theta_{1-|\tilde{S}|}) \leq \frac{2p}{(n-1)\sqrt{\alpha}}$$

13. Carlsson et Mémoli, 2010, JMLR

14. 🖹 D., Gallopin et Molinier, 2024, arXiv

Stabilité de shock 14

♀ La décomposition en deux étapes stabilise la méthode. θ_{A_1} et θ_{A_2} deux dendrogrammes de lien simple basés sur les matrices de distance A_1 et A_2 , $d_{coph}(\theta_{A_1}, \theta_{A_2})$ la distance cophénétique.

Stabilité de la classification hiérarchique avec lien simple 13

Théorème (D., Gallopin et Molinier, 2024+)

Soit deux échantillons $(\mathbf{y}_1, \dots, \mathbf{y}_n)$ et $(\mathbf{y}_1, \dots, \mathbf{\tilde{y}}_i, \dots, \mathbf{y}_n)$, où $\mathbf{\tilde{y}}_i \sim \mathbf{y}_i \sim \mathbf{Y}$, et soit S et \tilde{S} les matrices de covariance empiriques respectives. Alors, pour $\alpha \in (0, 1)$, avec probabilité $1 - \alpha$,

$$d_{coph}(\theta_{1-|S|},\theta_{1-|\tilde{S}|}) \leq \frac{2p}{(n-1)\sqrt{\alpha}}.$$

- 13. Carlsson et Mémoli, 2010, JMLR
- 14. 🖹 D., Gallopin et Molinier, 2024, arXiv

En pratique : quelle fonction de lien?

En pratique : performance en stabilité des réseaux

Conclusion de la partie 1

- Méthode d'inférence de réseaux en grande dimension
- Décomposition en deux étapes pour stabiliser l'inférence

- Structure en blocs : variables cachées influentes?
- Inconvénient de la modélisation : hypothèse gaussienne

Conclusion de la partie 1

- Méthode d'inférence de réseaux en grande dimension
- Décomposition en deux étapes pour stabiliser l'inférence

- Structure en blocs : variables cachées influentes?
- Inconvénient de la modélisation : hypothèse gaussienne

Partie 2. CAUSALITÉ

Graphes orientés - cas gaussien¹⁵

15. Shimizu, Hoyer, Hyvärinen et Kerminen, 2006, JMLR

Graphes orientés - cas gaussien¹⁵

15. Shimizu, Hoyer, Hyvärinen et Kerminen, 2006, JMLR

Graphes orientés - cas gaussien¹⁵

A Magie des vecteurs gaussiens

^{15.} Shimizu, Hoyer, Hyvärinen et Kerminen, 2006, JMLR

Modèle structurel causal

 $X_j = f_j(\operatorname{Pa}(X_j), \varepsilon_j)$, et $(\varepsilon_j)_j$ mutuellement indépendants

• Représentation : graphes dirigés acycliques (DAGs)

$$Z = \varepsilon_Z$$

$$X = f_X(Z, \varepsilon_X)$$

$$Y = f_Y(X, Z, \varepsilon_Y)$$

Modèle structurel causal

 $X_j = f_j(\operatorname{Pa}(X_j), \varepsilon_j)$, et $(\varepsilon_j)_j$ mutuellement indépendants

• Représentation : graphes dirigés acycliques (DAGs)

$$Z = \varepsilon_Z$$

$$X = f_X(Z, \varepsilon_X)$$

$$Y = f_Y(X, Z, \varepsilon_Y)$$

• Intervention : manipulation du système, encodée par l'opérateur do.

$$do(X = x)$$

$$Z = \varepsilon_Z$$

$$X = x$$

$$Y = f_Y(X, Z, \varepsilon_Y)$$

Modèle structurel causal

 $X_j = f_j(\operatorname{Pa}(X_j), \varepsilon_j)$, et $(\varepsilon_j)_j$ mutuellement indépendants

- Représentation : graphes dirigés acycliques (DAGs)
- Intervention : manipulation du système, encodée par l'opérateur do.
 P(y|do(x))

Modèle structurel causal

 $X_j = f_j(\operatorname{Pa}(X_j), \varepsilon_j)$, et $(\varepsilon_j)_j$ mutuellement indépendants

- Représentation : graphes dirigés acycliques (DAGs)
- Intervention : manipulation du système, encodée par l'opérateur do.

P(y|do(x)) $P(y|do(x)) \neq P(y|x)$

Modèle structurel causal

 $X_j = f_j(\operatorname{Pa}(X_j), \varepsilon_j)$, et $(\varepsilon_j)_j$ mutuellement indépendants

- Représentation : graphes dirigés acycliques (DAGs)
- Intervention : manipulation du système, encodée par l'opérateur do.

P(y|do(x)) $P(y|do(x)) \neq P(y|x)$

 $\mathbb{P}(\text{chapeau}|\text{T-shirt gris}) = 1$

Causalité et interventions 16

Modèle structurel causal

 $X_j = f_j(\operatorname{Pa}(X_j), \varepsilon_j)$, et $(\varepsilon_j)_j$ mutuellement indépendants

- Représentation : graphes dirigés acycliques (DAGs)
- Intervention : manipulation du système, encodée par l'opérateur do.

P(y|do(x)) $P(y|do(x)) \neq P(y|x)$

 $\mathbb{P}(\text{chapeau}|\text{T-shirt gris}) = 1$

 $\mathbb{P}(\text{chapeau}|do(\text{T-shirt gris})) = 10/16$

Découverte causale

Etant données des données observationnelles, peut-on déterminer le graphe causal?

Hypothèse : le graphe encode exactement (ni plus, ni moins) les dépendances (conditionnelles) des données observées

Etat de l'art

- Méthodes basées sur le bruit ^{17 18}
- Méthodes basées sur les contraintes 19 20

17. Shimizu, Hoyer, Hyvärinen et Kerminen, 2006, JMLR

- 18. Zhang et Hyvärinen, 2009, UAI
- 19. Spirtes, Glymour et Scheines, 2000
- 20. Colombo et Maathuis, 2014, JMLR

Découverte causale

Etant données des données observationnelles, peut-on déterminer le graphe causal?

Hypothèse : le graphe encode exactement (ni plus, ni moins) les dépendances (conditionnelles) des données observées

Etat de l'art

- Méthodes basées sur le bruit ^{17 18}
 - Dans le modèle additif, si au plus un des bruits est Gaussien!
 - Si bruit non additif, il existe des extensions
- Méthodes basées sur les contraintes ^{19 20}

- 18. Zhang et Hyvärinen, 2009, UAI
- 19. Spirtes, Glymour et Scheines, 2000
- 20. Colombo et Maathuis, 2014, JMLR

^{17.} Shimizu, Hoyer, Hyvärinen et Kerminen, 2006, JMLR

Découverte causale

Etant données des données observationnelles, peut-on déterminer le graphe causal?

Hypothèse : le graphe encode exactement (ni plus, ni moins) les dépendances (conditionnelles) des données observées

Etat de l'art

- Méthodes basées sur le bruit ^{17 18}
- Méthodes basées sur les contraintes ^{19 20}
 - Squelette : construit par des tests d'indépendance, potentiellement non paramétrique
 - Orientation par des règles

- 17. Shimizu, Hoyer, Hyvärinen et Kerminen, 2006, JMLR
- 18. Zhang et Hyvärinen, 2009, UAI
- 19. Spirtes, Glymour et Scheines, 2000
- 20. Colombo et Maathuis, 2014, JMLR

Raisonnement causal

Etant donnés le graphe causal et des données observationnelles, peut-on répondre à une question causale ?

But : estimer P(y|do(x))

- Données expérimentales ? Essai de contrôle randomisé. Coûteux, non éthique ou même infaisable.
- Directement à partir des données observationnelles ? Identifiabilité

Etat de l'art

• Le critère backdoor identifie l'effet total dans les DAGs²¹

$$P(Y = y | do(X = x))$$

$$\sum_{z \in \Omega(Z)} P(Y = y | X = x, Z = z) P(Z = z)$$

- Le critère backdoor généralisé identifie l'effet total dans la classe d'équivalence de Markov²²
- Autres ? Critère frontdoor, do-calculus, algorithm ID, ...

21. Pearl, 2000

22. Maathuis et Colombo, 2015, AoS

Raisonnement causal

Etant donnés le graphe causal et des données observationnelles, peut-on répondre à une question causale ?

But : estimer P(y|do(x))

- Données expérimentales ? Essai de contrôle randomisé. Coûteux, non éthique ou même infaisable.
- Directement à partir des données observationnelles ? Identifiabilité

Etat de l'art

=

Le critère backdoor identifie l'effet total dans les DAGs²¹

$$P(Y = y | do(X = x))$$

$$= \sum_{z \in \Omega(Z)} P(Y = y | X = x, Z = z) P(Z = z)$$

- Le critère backdoor généralisé identifie l'effet total dans la classe d'équivalence de Markov²²
- Autres ? Critère frontdoor, do-calculus, algorithm ID, ...

21. Pearl, 2000

22. Maathuis et Colombo, 2015, AoS

Emilie Devijver

Graphe causal à fenêtre

Graphe causal résumé A potentiellement cyclique Graphe causal résumé étendu

Graphe causal à fenêtre

Graphe causal résumé A potentiellement cyclique Graphe causal résumé étendu

Graphe causal à fenêtre

 Y_{t-}

 $\left(Y_{t} \right)$

Graphe causal résumé A potentiellement cyclique

X,

Graphe causal à fenêtre

Graphe causal résumé A potentiellement cyclique

Graphe causal résumé étendu

 Z_t

Y_t

X,

Découverte causale pour les séries temporelles

- 🞓 Thèse Charles Assaad, 2021
- 🞓 Thèse Lei Zan, 2024
 - Etat de l'art : quels graphes? Quelles méthodes?²³
 - Introduction du graphe causal résumé étendu²⁴
 - Tests d'indépendance adaptées aux séries temporelles et aux données mixtes²⁵
 - Méthode hybride, profitant des avantages des différentes classes²⁶

- 24. 🖹 Assaad, D. et Gaussier, 2022, UAI
- 25. 🖹 Zan, Meynaoui, Assaad, D. et Gaussier, 2022, Entropy
- 26. 🖹 Bystrova, Assaad, Arbel, D., Gaussier et Thuillier, 2024, TMLR

^{23. 🖹} Assaad, D. et Gaussier, 2022, JAIR

Raisonnement causal pour les séries temporelles

Etant donné un graphe causal pour les séries temporelles, en supposant qu'on observe toutes les variables, peut-on calculer

 $P(Y_t = y_t | do(X_{t-\gamma} = x_{t-\gamma}))?$

- Dans le graphe causal déplié ^{27 28} : le critère backdoor est complet pour l'identification de l'effet total.
- Dans un graphe résumé ou résumé étendu : que signifie être identifiable ?
 - La même formule fonctionne pour tous les graphes admissibles
 - Dans le graphe résumé étendu²⁹, le critère backdoor commun est complet pour l'identification de l'effet total.
 - Dans le graphe résumé, c'est plus complexe, à cause des cycles potentiels.

^{27.} Blondel, Arias et Gavaldà, 2017, IJDSA

^{28.} Shpitser et Pearl, 2008, JMLR

^{29. 🖹} Assaad, D., Gaussier, Goessler, Meynaoui, 2024, UAI

Raisonnement causal pour les séries temporelles

Théorème (E) Yvernes, Assaad, D., Gaussier, 2024+)

Soit un graphe causal résumé. L'effet total $P(y_t | do(x_{t-\gamma_1}^1), ..., do(x_{t-\gamma_m}^m))$ est identifiable par backdoor commun si et seulement si pour tout $X_{t-\gamma_j}^j$ et pour tout graphe déplié admissible, il n'existe pas de chemin backdoor sans collider de $X_{t-\gamma_i}^i$ à Y_t qui reste dans le cône de descendance.

Sélection de variables causales

- En statistiques, la sélection de variables est utilisée pour
 - Réduire la dimension
 - Améliorer l'interprétabilité
 - Améliorer la généralisation des modèles
- A Peut-on mettre un sens causal aux variables sélectionnées?
 - Sous les hypothèses causales, les variables les plus pertinentes pour prédire une réponse sont ses parents, au sens minimax³⁰
 - La couverture de Markov (parents, enfants et époux) est le plus petit ensemble qui donne toute l'information
 - **?** Comment comprendre la distinction ?
 - ? Que se passe-t-il si on suppose que certaines variables sont cachées?
 - **?** Peut-on utiliser la sélection causale dans les méthodes classiques de prédiction en apprentissage statistique ?
- Thèse Théotime Le Goff, en cours

30. Peters, Buhlmann et Meinshausen, 2016, JRSS B

Sélection de variables causales

- En statistiques, la sélection de variables est utilisée pour
 - Réduire la dimension
 - Améliorer l'interprétabilité
 - Améliorer la généralisation des modèles
- A Peut-on mettre un sens causal aux variables sélectionnées?
 - Sous les hypothèses causales, les variables les plus pertinentes pour prédire une réponse sont ses parents, au sens minimax³⁰
 - La couverture de Markov (parents, enfants et époux) est le plus petit ensemble qui donne toute l'information
 - ? Comment comprendre la distinction?
 - ? Que se passe-t-il si on suppose que certaines variables sont cachées?
 - ? Peut-on utiliser la sélection causale dans les méthodes classiques de prédiction en apprentissage statistique ?
- 🞓 Thèse Théotime Le Goff, en cours

^{30.} Peters, Buhlmann et Meinshausen, 2016, JRSS B

Abstraction de graphes causaux

- Connaissance causale à un plus haut niveau de granularité que les variables observées
- La classe d'équivalence de Markov est une abstraction du vrai DAG, la seule que l'on puisse atteindre en découverte sans hypothèse paramétrique
- Les graphes résumés et résumés étendus sont une abstraction du graphe causal déplié
- Proposition pour des groupes de variables³¹
- ? Découverte causale ? Raisonnement causal ?
- **?** Comment choisir le bon niveau de granularité pour pouvoir estimer un effet causal ?
- Thèse Clément Yvernes, en cours

31. Anand, Ribeiro, Tian et Bareinboim, 2023, AAAI

Abstraction de graphes causaux

- Connaissance causale à un plus haut niveau de granularité que les variables observées
- La classe d'équivalence de Markov est une abstraction du vrai DAG, la seule que l'on puisse atteindre en découverte sans hypothèse paramétrique
- Les graphes résumés et résumés étendus sont une abstraction du graphe causal déplié
- Proposition pour des groupes de variables ³¹
- ? Découverte causale ? Raisonnement causal ?
- ? Comment choisir le bon niveau de granularité pour pouvoir estimer un effet causal ?
- Thèse Clément Yvernes, en cours

^{31.} Anand, Ribeiro, Tian et Bareinboim, 2023, AAAI

Graphe causal différentiel pour deux populations

- Réseaux différentiels³²: large littérature, notamment avec les modèles graphiques gaussiens
- Pour les graphes causaux ? Littérature plus restreinte
- Découverte causale : modèles paramétriques ³³
- Intérêt pratique : collaboration avec le CHU
- ? Découverte causale non paramétrique?
- ? Relaxer l'hypothèse d'ordre causal commun ?
- ? Pouvoir raisonner à partir de ces graphes ?

^{32.} Shojaie, 2020, Computational Statistics

^{33.} Chen, Bello, Aragam, et Ravikumar, 2023, NeurIPS

Graphe causal différentiel pour deux populations

- Réseaux différentiels³²: large littérature, notamment avec les modèles graphiques gaussiens
- Pour les graphes causaux ? Littérature plus restreinte
- Découverte causale : modèles paramétriques 33
- Intérêt pratique : collaboration avec le CHU
- ? Découverte causale non paramétrique?
- ? Relaxer l'hypothèse d'ordre causal commun?
- ? Pouvoir raisonner à partir de ces graphes?

^{32.} Shojaie, 2020, Computational Statistics

^{33.} Chen, Bello, Aragam, et Ravikumar, 2023, NeurIPS

Conclusion de la partie 2

- Causalité au sens de Pearl
- Travaux sur les graphes causaux pour les séries temporelles (découverte et raisonnement)
- Différents intérêts pratiques :
 - découverte causale à partir de données observationnelles : lien entre la connaissance des experts et ce qui est encodé dans les données ?
 - répondre à des questions interventionnelles à partir de données observationnelles

Conclusion de l'exposé

 Modélisation de l'interdépendance dans les données via les modèles graphiques

- Etude des modèles graphiques gaussiens
- Exploration des modèles causaux, avec un focus particulier sur les séries temporelles

L'apprentissage statistique au service des applications

- La stabilité est essentielle pour garantir des résultats fiables et robustes
- Potentiel d'interprétation grâce à des modèles paramétriques ou des représentation graphiques
- Conclusions robustes dans les analyses par les experts

Perspectives

Conclusion générale

Extrait de mes travaux...

Conclusion générale

Extrait de mes travaux... plus de détails dans le manuscrit ! Merci aux doctorants et post-doctorants qui m'ont fait confiance avant l'heure !

Probabilistic regression trees and their ensemble extensions

Nonlinear mixed effects modeling and warping for functional data

$$Y_{i}(t_{i,j}) = \mu \left\{ w^{-1}(t_{i,j}; \boldsymbol{\theta}_{i}) \right\} + U_{i} \left\{ w^{-1}(t_{i,j}; \boldsymbol{\theta}_{i}) \right\} + \varepsilon_{i,j},$$
(1)

Theorem

Let $i \in \{1, ..., n\}$ be given. Let $\theta_i \sim \mathcal{N}_r(\theta_0, \Sigma^{\theta})$ and $\tilde{\theta}_i \sim \mathcal{N}_r(\tilde{\theta}_0, \Sigma^{\tilde{\theta}})$ be used to define two warping functions $w^{-1}(.; \theta_i)$ and $w^{-1}(.; \tilde{\theta}_i)$, and let X_i and \tilde{X}_i be the corresponding warped functions, such that

$$Y_i(t) = X_i\{w^{-1}(t;\boldsymbol{\theta}_i)\} = \tilde{X}_i\{w^{-1}(t;\tilde{\boldsymbol{\theta}}_i)\}.$$

Then model (1) is identifiable if and only if

$$\begin{split} \mathbf{B}_{i}^{\mu} &= \mathbb{E}_{\theta_{i},\tilde{\theta}_{i}} \left\{ (\mathbf{B}_{i}^{\mu})^{\theta_{i},\tilde{\theta}_{i}} \right\}; \\ (\mathbf{B}_{i}^{U})^{\top} \Sigma^{U_{i}} \mathbf{B}_{i}^{U} &= \mathbb{V}_{\theta_{i},\tilde{\theta}_{i}} \left\{ (\mathbf{B}_{i}^{\mu})^{\theta_{i},\tilde{\theta}_{i}} \alpha^{\mu} \right\} + \mathbb{E}_{\theta_{i},\tilde{\theta}_{i}} \left[\left\{ (\mathbf{B}_{i}^{U})^{\theta_{i},\tilde{\theta}_{i}} \right\}^{\top} \Sigma^{U_{i}} (\mathbf{B}_{i}^{U})^{\theta_{i},\tilde{\theta}_{i}} \right] \end{split}$$

and at least one of the three condition is not satisfied :

(**B**^U_i)^T**B**^U_i
$$\neq$$
 0_{mu};

Theorem

Fix N and T. Suppose $(\mathbf{Y}_1, \ldots, \mathbf{Y}_N)$ is a sequence of iid random variables satisfying the functional nonlinear mixed model (1) observed on fixed time points : for $i = 1, \ldots, N$, for $j = 1, \ldots, T_i$, $[\mathbf{Y}_i]_j = Y_i(t_{i,j})$. Moreover, suppose that the model is identifiable and that the update of θ_i is a contraction mapping. Then, $((\hat{\alpha}^{\mu})^{(\infty)}, (\hat{\sigma}_{\varepsilon})^{(\infty)}, (\Sigma^U)^{(\infty)}, \hat{\theta}_0^{(\infty)}, (\hat{\Sigma}^{\theta})^{(\infty)})$ exists and is unique, and the algorithm converges to this solution with a geometric rate with respect to the Euclidean distance.

Theorem

Suppose $(\mathbf{Y}_1, ..., \mathbf{Y}_N)$ is a sequence of iid random variables satisfying the functional nonlinear mixed model observed on fixed time points : for i = 1, ..., N, for $j = 1, ..., T_i$, $[\mathbf{Y}_i]_j = Y_i(t_{i,j})$. We first make the following assumption, to avoid having to theoretically deal with a modeling bias. We assume that the functions μ , $(U_i)_{i=1,...,N}$ and w belong to the space spanned by the considered spline basis, and that $\sigma_{\varepsilon} \xrightarrow[\min T_i \to \infty]{} 0$.

Suppose that the model is identifiable and that the update of θ_i is a contraction mapping. We assume the existence and positive definiteness of \mathcal{I} , which is the limit of minus the expected Hessian matrix of the log-likelihood function based on the model. We also assume that for all i = 1, ..., N, the

Mixture of segmentation

 $Y_{ih}(t_j) = f_{k\ell h}(t_j) + \eta_{ijh},$ $[\mathbf{A}_i]_{j,\cdot}|(z_{ik} = 1, W_{j\ell} = 1) = \mu_{k\ell} + \varepsilon_{ij}$ (2)

Theorem (Identifiability of (2))

Assume that :

• For every $k \in \{1, ..., K\}$ and $\ell \in \{0, ..., L_k\}$, there exists at least one $r \in \{1, ..., p\}$ such that $\sigma_{k\ell r} \neq \sigma_{k,\ell+1,r}$ or $\mu_{k\ell r} \neq \mu_{k,\ell+1,r}$.

$$We have D \ge \max_{k \in \{1, \dots, K\}} L_k + 1.$$

If there exists $k \neq k'$ such that $L_k = L_{k'}$ then : there exists $\ell \in \{0, ..., L_k\}$ such that $T_{k\ell} \neq T_{k',\ell}$, or there exists $\ell \in \{0, ..., L_k\}$ and $r \in \{1, ..., p\}$ such that : $\sigma_{k\ell r} \neq \sigma_{k',\ell,r}$ or $\mu_{k\ell r} \neq \mu_{k',\ell,r}$.

• For every $k \in \{1, ..., K\}, \pi_k > 0$.

Under these assumptions, the model (2) is identifiable.

Theorem

Let **A** be a matrix of a $n \times T$ observations of the model (2) with true parameter θ , **T** where the number of clusters K and the number of segments $(L_k)_{1 \le k \le K}$ are known. We assume that there exists M > 0 such that for all $k \in \{1, ..., K\}$ and $\ell \in \{0, ..., L_k\}$,

 $\mu_{k\ell} \in [-M; M];$

that there exists $\tau_{\min} > 0$ such that for all $k \in \{1, ..., K\}$ and $\ell \in \{0, ..., L_k\}$,

$$T_{k,\ell+1} - T_{k\ell} > \tau_{\min} d.$$

We also assume that $\log(N)/d \xrightarrow[n,d\to+\infty]{n,d\to+\infty} 0$. If there exists $k \neq k'$ such that $L_k = L_{k'}$ then we assume that there exists at least $\tau_{\min}d$ coordinates j such that the distribution of $Y_{ij}|z_{ik} = 1$ is different from the distribution of $Y_{ij}|z_{ik'} = 1$. Finally, we assume that there exists a constant c > 0 such that for every $k \in \{1, \ldots, K\}, \pi_k > c$, and Assumption I. Then,

$$(\widehat{\boldsymbol{\theta}},\widehat{\mathbf{T}}) \stackrel{\mathbb{P}}{\underset{n,d \to +\infty}{\to}} (\boldsymbol{\theta}^{\star},\mathbf{T}^{\star})$$
Simultaneous confidence bands

Theorem

Set a probability $\alpha \in [0, 1]$. Then, we have

$$\mathbb{P}\left(\forall t \in [0,1], \left| \hat{\underline{f}}^{L,L^*}(t) - \underline{f}^{L,L^*}(t) \right| \le \hat{d}^L(t) \right) = 1 - \alpha$$
with $\hat{d}^L(t) = \hat{q}^L \sqrt{\hat{C}^{L,L^*}(t,t)/N}$

and \hat{q}^L defined as the solution of the following equation, seen as a function of q^L :

$$\alpha = \mathbb{P}(|t_{N-1}| > q^L) + \frac{\|\tau^L\|_1}{\pi} \left(1 + \frac{(q^L)^2}{N-1}\right)^{-(N-1)/2}$$

,

with $(\tau^L)^2(t) = \partial_{12}c(t, t) = Var(Z_L(t))'$ where we denote $\partial_{12}c(t, t)$ the partial derivatives of a function c(t, s) in the first and second coordinates and then evaluated at t = s.

We can thus deduce a confidence band of level $1 - \alpha$ for \underline{f}^{L,L^*} :

$$CB_{1}(\underline{f}^{L,L^{*}}) = \{ \forall t \in [0,1], [\underline{\hat{f}}^{L,L^{*}}(t) - \hat{d}^{L}(t); \underline{\hat{f}}^{L,L^{*}}(t) + \hat{d}^{L}(t)] \}.$$

A natural criteria to select the best L is then

$$\widetilde{crit}(L) = \|\hat{q}^{L_{\max}} - \hat{q}^{L}\|^{2} + \lambda \frac{L}{N}.$$

We define $\tilde{L} = \arg \min_{L} \widetilde{crit}(L)$, and center the band around $\underline{\hat{f}}^{\tilde{L},L^*}$: $CB_2(\underline{f}^{L^*}) = CB_1(\underline{f}^{\tilde{L},L^*})$

Tree-based Active Learning

Figure – Comparison of the samples selected for labeling (shown as black dots) by our method from a generated dataset with 2 features and 500 samples, using different query criteria (labeled as RT-AL, RT-AL(Diversity-based) and RT-AL(Representativity-based)), with passive sampling and model-free AL methods

Multi-class classification with partially labeled data

Figure – Self-training Algorithm : A supervised classifier is learned from the labeled set and is used on the unlabeled set to provide predictions for the classes. A policy determines which predictions are trusted (typically the most confident ones), and pseudo-labels are assigned to those observations based on their predictions. This process is iterated until no more points remain unlabeled.