Introduction to machine learning

Eric Gaussier

LIG - MIAI Univ. Grenoble Alpes Eric.Gaussier@imag.fr

Supervised machine learning

Evaluation

A few words about data

Conclusion

Table des matières

Supervised machine learning

Evaluation

A few words about data

Conclusion

What's machine learning?

- Unsupervised learning
- Supervised learning (weakly supervised, semi-supervised)
- Reinforcement learning

Focus today on supervised learning

Supervised machine learning

Evaluation A few words about data Conclusion

Supervised learning (1)

- ▶ input x, output y y = f*(x), f* (function/process/algorithm) unknown
- One observes a series of input-output pairs
- From these observations, the learner A aims to identify, within a family of functions, the best function to relate inputs to outputs

Supervised learning (2)

Input : training set

- $\mathcal{D} = ((x^{(1)}, y^{(1)}), \cdots, (x^{(n)}, y^{(n)}))$
- x real vector $x \in \mathbb{R}^p$
- ▶ $y \in \mathcal{Y}$ binary classification : $\mathcal{Y} = \{0, 1\}$; simple linear regression : $\mathcal{Y} \subseteq \mathbb{R}$

Learning model

- \blacktriangleright Family of functions ${\cal F}$ example : set of linear functions
- Cost function : measures the error made by the learned model (error between y, desired output, and the predicted output y' = f(x), f ∈ F)
- Objective function : function to be optimized (minimized) cost function plus additional terms (regularization)
- Optimization method (to identify the "best" function acc. to the objective function)

How to measure the quality of a learned model?

Loss (cost) function to evaluate the errors made by a learned model on known input-output pairs Loss function

$$L:\mathcal{Y}x\mathcal{Y}
ightarrow\mathbb{R}^+,$$
 such that $L(y,y')>0$ for $y
eq y'$

Illustration

$$L(y,y') = \left\{ egin{array}{c} 0 & ext{if } y=y', \ 1 & ext{otherwise} \end{array}
ight.$$

Quadratic loss :

$$L(y,y')=(y-y')^2$$

Selecting $f \in \mathcal{F}$

Looking for the function that minimizes the prediction errors

1. Ideal case - Functional risk minimization :

$$\arg\min_{f\in\mathcal{F}}\underbrace{\int_{x}\int_{y}P(x,y)L(y,f(x))dxdy}_{R(f)=\mathbb{E}_{P(x,y)}[L(y,f(x))]}$$

2. Realistic case - Empirical risk minimization :

$$\underset{f \in \mathcal{F}}{\arg\min} \underbrace{\frac{1}{n} \sum_{i=1}^{n} L(y^{(i)}, f(x^{(i)}))}_{\operatorname{Remp}(f; \mathcal{D})} = \underset{f \in \mathcal{F}}{\arg\min} \operatorname{Remp}(f; \mathcal{D})$$

Selecting $f \in \mathcal{F}$

Looking for the function that minimizes the prediction errors

1. Ideal case - Functional risk minimization :

$$\underset{f \in \mathcal{F}}{\operatorname{arg\,min}} \underbrace{\int_{X} \int_{Y} P(x, y) L(y, f(x)) dx dy}_{R(f) = \mathbb{E}_{P(x, y)}[L(y, f(x))]}$$

2. Realistic case - Empirical risk minimization :

$$\underset{f \in \mathcal{F}}{\arg\min} \underbrace{\frac{1}{n} \sum_{i=1}^{n} L(y^{(i)}, f(x^{(i)}))}_{\operatorname{Remp}(f; \mathcal{D})} = \underset{f \in \mathcal{F}}{\arg\min} \operatorname{Remp}(f; \mathcal{D})$$

Intuitive justification of the empirical risk minimization prinicple

For $f \in \mathcal{F}$ fixed, the empirical risk tends towards the true risk when the number of training examples tends to infinity

Introduction to machine learning

However, in practice ...

... when the number of examples is limited :

Solution : $\arg \min_{f \in \mathcal{F}} \operatorname{Remp}(f) + \lambda \Omega(f)$ $\Omega(f)$ is a measure of the complexity of f

Image from "Elements of statistical learning". Hastie, Tibshirani, Friedman. Springer

However, in practice ...

... when the number of examples is limited :

Solution : $\arg \min_{f \in \mathcal{F}} \operatorname{Remp}(f) + \lambda \Omega(f)$ $\Omega(f)$ is a measure of the complexity of f

Image from "Elements of statistical learning". Hastie, Tibshirani, Friedman. Springer

Regularization : complexity, knowledge, constraints

Regularization allows one to :

- Avoid selecting too complex functions
- Integrate prior knowledge and constraints

A learning model :

- Has access to a set of functions \mathcal{F}
- Selects the "best" function from the training set and the objective function defined by the user/designer
- Operates this selection following optimization methods (*stochastic gradient descent (SGD)*)

The user/designer defines or selects :

- The loss function adapted to the task addressed
- The regularization terms $(L_1, L_2, \dots$ regularization)

What about original representation of examples?

The user/designer defines or selects :

- The loss function adapted to the task addressed
- The regularization terms $(L_1, L_2, ... regularization)$

What about original representation of examples?

Feature engineering vs representation learning

1. Before deep learning : huge effort devoted to pre-processing and the selection and extraction of appropriate features

2. Deep learning : adequate choice of the architecture that will lead to learn an appropriate representation (still need original representation)

Which family of functions?

Let R^* be the minimal functional over all possible functions. Let $R_{\mathcal{F}}(f_{\min})$ be the minimal functional risk over the functions in \mathcal{F} and let $R_{\mathcal{F}}(f)$ be the functional risk of the function f in \mathcal{F} . One has :

$$R_{\mathcal{F}}(f) - R^* = \underbrace{\left(R_{\mathcal{F}}(f) - R_{\mathcal{F}}(f_{\min})\right)}_{\text{estimation error}} + \underbrace{\left(R_{\mathcal{F}}(f_{\min}) - R^*\right)}_{\text{approximation error}}$$

Remark (this is just a trend !)

- The simpler the family is, the smaller the estimation error and the bigger the approximation error are
- Inversely, the more complex the family is, the bigger the estimation error and the smaller the approximation error are

Which family of functions?

Let R^* be the minimal functional over all possible functions. Let $R_{\mathcal{F}}(f_{\min})$ be the minimal functional risk over the functions in \mathcal{F} and let $R_{\mathcal{F}}(f)$ be the functional risk of the function f in \mathcal{F} . One has :

$$R_{\mathcal{F}}(f) - R^* = \underbrace{\left(R_{\mathcal{F}}(f) - R_{\mathcal{F}}(f_{\min})\right)}_{\text{estimation error}} + \underbrace{\left(R_{\mathcal{F}}(f_{\min}) - R^*\right)}_{\text{approximation error}}$$

Remark (this is just a trend !)

- The simpler the family is, the smaller the estimation error and the bigger the approximation error are
- Inversely, the more complex the family is, the bigger the estimation error and the smaller the approximation error are

Tradeoff estimation-approximation

Multilayer perceptron - MLP (1)

- $\blacktriangleright \ \mathbf{y} \in \mathbb{R}^4, \mathbf{x} \in \mathbb{R}^3$
- $\mathbf{y} = f(\mathbf{x}) = f^{(3)}(f^{(2)}(f^{(1)}(\mathbf{x})))$
- Depth of the network (number of layers), dimensionality of each layer

MLP (2)

Which functions f^i at each layer? Let $\mathbf{h^{i-1}}$ be the input of f^i ($\mathbf{h^0} = \mathbf{x}$) : $f^i(\mathbf{h^{i-1}}) = \sigma(\mathbf{W}^i \mathbf{h^{i-1}} + \mathbf{b}^i)$ with $\mathbf{h^{i-1}} \in \mathbb{R}^{p_i}$, $\mathbf{W}^i \in \mathbb{R}^{p_{i+1} \times p_i}$, $\mathbf{b}^i \in \mathbb{R}^{p_{i+1}}$ The function σ is a non-linear (in general) function called an activation function (sigmoïd, tanh, RELU)

Supervised machine learning

Evaluation A few words about data Conclusion

- An MLP is a universal approximator
- Rich family of functions : good approximation but estimation more complex
- Number of parameters
- Number of training examples
- ▶ Regularization : L_1 -, L_2 -, ... norm, dropout, max pooling
- Quality of local minima?

Table des matières

Supervised machine learning

Evaluation

A few words about data

Conclusion

How to evaluate a learned model?

Train/test split

- Size of the annotated set, the training and test sets
- Train/test plit : 80-20, 70-30
- Random split, sometimes with constraints (time series)
- The model is learned on the training set and evaluated on the test set - you should not even glance at the test set

How to evaluate a learned model?

Train/validation/test split

- Validation set to determine hyperparameter values (degree of a polynomial function, number of neurons on each layer, ...)
- Random split 64-16-20 or 49-21-30
- For possible hyperparameter values (e.g., degree = 1, 2 or 3), learn model on training set, evaluate it on validation set
- The select the best hyperparameter values and learn the associated model on train+validation
- Finally evaluate this model on test set you should not even glance at the test set

How to evaluate a learned model?

x-flod cross-validation

- Randomly partition data in k groups of equal size {g₁,..., g_k} (k-fold cross-validation) - k = 3,5,10
- Construct k sets training-validation-test

▶ Set 1 : train=
$$\{g_1, \dots, g_{k-2}\}$$
; valid.= g_{k-1} ; test = g_k
▶ Set 2 : train.= $\{g_2, \dots, g_{k-1}\}$; valid.= g_k ; test = g_1
▶ ...

- Training, validation and evaluation on each set as before
- Compute average (over all sets) performance and associated standard deviation
- Advantage : avge, std deviation, and use of all training examples for both training and testing

Some remarks

Scale effects

Significant differences

- ▶ Is a system *B* which improves a system *A* by 0.008 pt really better?
- Statistical significance tests

Table des matières

Supervised machine learning

Evaluation

A few words about data

Conclusion

Data annotation is often a costly and difficult process

Annotated data may however be easily available in some contexts

- Machine translation ; pre-training LLMs
- Relevance of a web page for information retrieval
- Objects in images, actions in videos

Data annotation is often a costly and difficult process

Annotated data may however be easily available in some contexts

- Machine translation ; pre-training LLMs
- Relevance of a web page for information retrieval
- Objects in images, actions in videos

Table des matières

Supervised machine learning

Evaluation

A few words about data

Conclusion

Conclusion

- A rich, reactive domain opened to many actors
- Many questions still open
 - Local minima
 - Number of examples
 - Generalization properties
 - Adversarial examples, ...

Ac	lversarial	Traffic Signs
Original	80	120
Adversarial	80	120
Classified as:	Stop	Speed limit (30)

.