## Advanced ML

# - PageRank computation - 

Eric Gaussier

Univ. Grenoble Alpes
UFR-IM ${ }^{2}$ AG, LIG, MIAI@Grenoble Alpes
eric.gaussier@imag.fr

## Table of content

Introduction

Formalization

## Algorithms

## Conclusion

## IR on the web

## The web is not a standard collection!

## IR on the web

The web is not a standard collection!

## Exploitng hyperlinks

Hyperlinks constitute an important source of information that can be used to improve IR search

1. Enriched indexing of documents/pages through anchors pointing at them
2. Taking into account the importance of a page in the web (its PageRank)

## Enriched indexing

Html anchor which points to www.ibm.com and which contains the text Big Blue
<a href="www.ibm.com">Big Blue</a>

- Enriched indexing by adding to a description of a page all anchor texts pointing to it
- This enrichment can easily be done at the same time the collection is indexed


## Importance of a page on the web

Content-wise, the purple and green pages are equivalent. Which one one should privilege?


## Importance of a page on the web

## How to measure the importance of a page?

- Number of outgoing links?
- Number of incoming links?
- ... ?
- Number of incoming links, each link being weighted by the importance of the page they originate from

A page is all the more important that it is pointed to by many important pages

## Importance of a page on the web

How to measure the importance of a page?

- Number of outgoing links?
- Number of incoming links?
- ... ?
- Number of incoming links, each link being weighted by the importance of the page they originate from

A page is all the more important that it is pointed to by many important pages

## Table of content

## Introduction

Formalization

## Algorithms

## Conclusion

## A simple random walk (1)

Imagine a walker that starts on a page and randomly steps to a page pointed to by the current page, and does so infinitely


## A simple random walk (2)

In an infinite random walk,

1. The number of visits of a page divided by the number of steps gives an estimation of the probability of visiting a page in a random walk (the longer the walk, the more accurate the estimation)
2. The probabilities thus obtained are all the more important that the page considered is pointed to by important pages

## A simple random walk (3)

There are however a few problems!

1. Dead ends, black holes
2. Cycles


## Solution: teleportation

- At each step, the walker can either randomly choose an outgoing page, with prob. $\lambda$, or teleport to any page of the graph, with prob. $(1-\lambda)$
- It's as if all web pages were connected (completely connected graph)
- The random walk thus defines a Markov chain with probability matrix:

$$
P_{i j}= \begin{cases}\lambda \frac{A_{i j}}{\sum_{j=1}^{N} A_{i j}}+(1-\lambda) \frac{1}{N} & \text { if } \sum_{j=1}^{N} A_{i j} \neq 0 \\ \frac{1}{N} & \text { otherwise }\end{cases}
$$

where $A_{i j}=1$ if there is a link from $i$ to $j$ and 0 otherwise
$\lambda$ is an hyper-parameter, set by user/designer

## Short explanation



$\underbrace{(1-\lambda)}_{\text {probability of teleporting and }} \underbrace{\times}_{\text {of choosing } j \text { as destination }} \underbrace{\frac{1}{N}}$

## Example (1)

Let us consider the following graph


## Its adjacency matrix is defined by



## Example (1)

Let us consider the following graph


Its adjacency matrix is defined by

$$
A=\left(\begin{array}{llll}
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

## Example (2)

Considering no teleportation $(\lambda=1)$

$$
P_{i j}=\frac{A_{i j}}{\sum_{j=1}^{N} A_{i j}}
$$

## Example (2)

Considering no teleportation $(\lambda=1)$

$$
P_{i j}=\frac{A_{i j}}{\sum_{j=1}^{N} A_{i j}}
$$

And

$$
P=\left(\begin{array}{cccc}
0 & \frac{1}{2} & \frac{1}{2} & 0 \\
\frac{1}{3} & 0 & \frac{1}{3} & \frac{1}{3} \\
\frac{1}{2} & \frac{1}{2} & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

## Definitions and notations

Definition 1 A sequence of random variables $X_{0}, \ldots, X_{n}$ is said to be a (finite state) Markov chain for some state space $S$ if for any $x_{n+1}, x_{n}, \ldots, x_{0} \in S$ :

$$
P\left(X_{n+1}=x_{n+1} \mid X_{0}=x_{0}, \ldots, X_{n}=x_{n}\right)=P\left(X_{n+1}=x_{n+1} \mid X_{n}=x_{n}\right)
$$

$X_{0}$ is called the initial state; $|S|=N$
Definition 2 A Markov chain is called homogeneous or stationary if $P\left(X_{n+1}=y \mid X_{n}=x\right)$ is independent of $n$ for any $(x, y)$

## Definitions and notations (cont'd)

Definition 3 Let $\left\{X_{n}\right\}$ be a stationary Markov chain. The probabilities $P_{i j}=P\left(X_{n+1}=j \mid X_{n}=i\right)$ are called the one-step transition probabilities. The associated matrix $P$ is called the transition probability matrix

Definition 4 Let $\left\{X_{n}\right\}$ be a stationary Markov chain. The probabilities $P_{i j}^{n}=P\left(X_{n+m}=j \mid X_{m}=i\right)$ are called the $n$-step transition probabilities. The associated matrix $P^{n}$ is called the $n$-step transition probability matrix
$P_{i j}^{n}$ is the term at row $i$ and column $j$ of $P^{n}$

## Illustration

## Same graph as before



$$
\begin{aligned}
& S=\{1,2,3,4\} \\
& X_{n}=1, \text { or } 2, \text { or } 3, \text { or } 4
\end{aligned}
$$

## Transition probabilities

Remark: $P$ is a stochastic matrix; $\forall i, \sum_{j=1}^{N} P_{i j}=1$
Example

$$
P=\left(\begin{array}{cccc}
0 & \frac{1}{2} & \frac{1}{2} & 0 \\
\frac{1}{3} & 0 & \frac{1}{3} & \frac{1}{3} \\
\frac{1}{2} & \frac{1}{2} & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

Theorem (Chapman-Kolgomorov equation) Let $\left\{X_{n}\right\}$ be a stationary Markov chain and $n, m \geq 1$. Then:

$$
P_{i j}^{m+n}=P\left(X_{m+n}=j \mid X_{0}=i\right)=\sum_{k \in S} P_{i k}^{m} P_{k j}^{n}
$$

## Regularity (ergodicity)

Definition 5 Let $\left\{X_{n}\right\}$ be a stationary Markov chain with transition probability matrix $P$. It is called regular if there exists $n_{0}>0$ such that $p_{i j}^{n_{0}}>0 \forall i, j \in S$
Example

$$
P=\left(\begin{array}{cccc}
0 & \frac{1}{2} & \frac{1}{2} & 0 \\
\frac{1}{3} & 0 & \frac{1}{3} & \frac{1}{3} \\
\frac{1}{2} & \frac{1}{2} & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

Is $P$ regular? Is the matrix associated with the random walk with teleportation regular?

## Regularity (ergodicity)

Definition 5 Let $\left\{X_{n}\right\}$ be a stationary Markov chain with transition probability matrix $P$. It is called regular if there exists $n_{0}>0$ such that $p_{i j}^{n_{0}}>0 \forall i, j \in S$
Example

$$
P=\left(\begin{array}{cccc}
0 & \frac{1}{2} & \frac{1}{2} & 0 \\
\frac{1}{3} & 0 & \frac{1}{3} & \frac{1}{3} \\
\frac{1}{2} & \frac{1}{2} & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

Is $P$ regular? Is the matrix associated with the random walk with teleportation regular?
Yes to both questions; $n_{0}=3$ in the first case, 1 in the second!

## Regularity (cont'd)

Theorem (fundamental theorem for finite Markov chains)
Let $\left\{X_{n}\right\}$ be a regular, stationary Markov chain on a state space $S$ of $N$ elements. Then, there exists $\pi_{j}, j=1,2, \ldots, N$ such that:
(a) For any initial state $i$,

$$
P\left(X_{n}=j \mid X_{0}=i\right) \xrightarrow[n \rightarrow+\infty]{ } \pi_{j}, j=1,2, \ldots, N
$$

(b) The row vector $\pi=\left(\pi_{1}, \pi_{2}, \ldots, \pi_{N}\right)$ is the unique solution of the equations $\pi P=\pi, \pi \mathbf{1}=1$
(c) Any row of $P^{n}$ converges towards $\pi$ when $n \rightarrow \infty$ $\pi$ is called the long-run or stationary distribution (PageRank)

Let $\mathbf{x}^{(n)}$ denote the probability vector of the walker after $n$ steps $\left(x_{j}^{(n)}=P\left(X_{n}=j \mid X_{0}\right)\right)$
$\Rightarrow \mathbf{x}^{(n+1)}=\mathbf{x}^{(n)} P$ converges to $\pi$ (due to (a))

## Table of content

## Introduction

Formalization

## Algorithms

## Conclusion

## Associated algorithms

## Three main types

1. Compute $\mathbf{x}^{(n+1)}=\mathbf{x}^{(n)} P\left(=\mathbf{x}^{(0)} P^{n+1}\right)$ till convergence power method
2. Compute the left eigenvector of $P$ associated with the eigenvalue 1 (largest eigenvalue of $P$ )
3. Solve the equations $\pi P=\pi, \pi \mathbf{1}=1$ ( N equations with N unknowns) - Gauss-Seidel
4. For $1, O\left(T N^{2}\right)$ where $T$ is the number of iterations
5. For $2, O\left(N^{3}\right)$
6. For $3, O\left(T^{\prime} N^{2}\right)$ where $T^{\prime}$ is the number of iterations

## Associated algorithms

## Three main types

1. Compute $\mathbf{x}^{(n+1)}=\mathbf{x}^{(n)} P\left(=\mathbf{x}^{(0)} P^{n+1}\right)$ till convergence power method
2. Compute the left eigenvector of $P$ associated with the eigenvalue 1 (largest eigenvalue of $P$ )
3. Solve the equations $\pi P=\pi, \pi \mathbf{1}=1$ ( N equations with N unknowns) - Gauss-Seidel

## Complexity

1. For $1, O\left(T N^{2}\right)$ where $T$ is the number of iterations
2. For $2, O\left(N^{3}\right)$
3. For $3, O\left(T^{\prime} N^{2}\right)$ where $T^{\prime}$ is the number of iterations

## Power method

```
Input : adj. matrix \(A, \lambda, \epsilon\) (for stopping)
Initialization :
    - compute prob. matrix \(P\)
    \(-t \leftarrow 0, \mathbf{x}^{(t)}=\left(\frac{1}{N}, \ldots, \frac{1}{N}\right)\)
repeat
    \(\mathbf{x}^{(t+1)}=\mathbf{x}^{(t)} P\)
    \(\delta=\left\|\mathbf{x}^{(t+1)}-\mathbf{x}^{(t)}\right\|_{2}^{2}\)
    \(t \leftarrow t+1\)
until \(\delta \leq \epsilon\)
Output : PageRank \(\mathbf{x}^{(t)}\)
```

Algorithme 1: Algorithm "power method"

## Illustration (1)

Let us consider the following graph (with self loops):


Compute the PageRank of each page with $\lambda=0.8$

## Illsutration (2)

$$
\begin{aligned}
& A=\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right), P=\left(\begin{array}{cccc}
\frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\
\frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\
\frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\
\frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4}
\end{array}\right)=P^{2}=\cdots \\
& \mathbf{x}^{(0)} P=\left(\begin{array}{llll}
\frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4}
\end{array}\right) \times\left(\begin{array}{cccc}
\frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\
\frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\
\frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\
\frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4}
\end{array}\right)=\left(\begin{array}{llll}
\frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4}
\end{array}\right)=\mathbf{x}^{(0)} \\
& \Rightarrow \pi=\left(\begin{array}{llll}
\frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4}
\end{array}\right)
\end{aligned}
$$

## Table of content

## Introduction

Formalization

## Algorithms

## Conclusion

## Conclusion (1)

1. Stationary, regular Markov chains admit a stationary (steady-stable) distribution
2. This distribution can be obtained in different ways:

- Power method: let the chain run for a sufficiently long time
- Linear system: solve the linear system associated with $\pi P=\pi, \pi \mathbf{1}=1$ (e.g. Gauss-Seidel)
- $\pi$ is the left eigenvector associated with the highest eigenvalue (1) of $P$ (eigenvector decomposition, e.g. Cholevsky)
The PageRank can be obtained by any of these methods (power method, Gauss-Seidel are preferred when the graph is large)


## Conclusion (2)

Two main innovations at the basis of Web search engines at the end of the 90's:

1. Rely on additional index terms contained in anchor texts
2. Integrate the importance of a web page (PageRank) into the score of a page

## References

C. Manning. P. Raghavan, H. Schütze, "Introduction to Information Retrieval", 2008 (https://nlp.stanford.edu/IR-book/information-retrieval-book.html) A. DasGupta, "Probability for Statistics and Machine Learning" Springer, 2011

## Conclusion (2)

Two main innovations at the basis of Web search engines at the end of the 90's:

1. Rely on additional index terms contained in anchor texts
2. Integrate the importance of a web page (PageRank) into the score of a page

The PageRank can be computed to obtain the importance of any node, in any graph!

References

- C. Manning, P. Raghavan, H. Schütze, "Introduction to Information Retrieval", 2008 (https://nlp.stanford.edu/IR-book/information-retrieval-book.html)
- A. DasGupta, "Probability for Statistics and Machine Learning", Springer, 2011


## Conclusion (2)

Two main innovations at the basis of Web search engines at the end of the 90's:

1. Rely on additional index terms contained in anchor texts
2. Integrate the importance of a web page (PageRank) into the score of a page

## The PageRank can be computed to obtain the importance of any node, in any graph!

References

- C. Manning, P. Raghavan, H. Schütze, "Introduction to Information Retrieval", 2008 (https://nlp.stanford.edu/IR-book/information-retrieval-book.html)
- A. DasGupta, "Probability for Statistics and Machine Learning", Springer, 2011

